Spelling suggestions: "subject:"multibiometric"" "subject:"biometrics""
1 |
Investigating the Role of Multibiometric Authentication on Professional Certification E-examinationSmiley, Garrett 01 January 2013 (has links)
E-learning has grown to such an extent that paper-based testing is being replaced by computer-based testing otherwise known as e-exams. Because these e-exams can be delivered outside of the traditional proctored environment, additional authentication measures must be employed in order to offer similar authentication assurance as found in proctored, paper-based testing.
This dissertation addressed the need for valid authentication in e-learning systems, in e-examinations in particular, and especially in professional certification e-examinations. Furthermore, this dissertation proposed a more robust method for learner authentication during e-examination taking. Finally, this dissertation extended e-learning research by comparing e-examination scores and durations of three separate groups of exam takers using different authentication methods: Online Using Username/Password (OLUP), In-Testing Center (ITC), and Online with Multibiometrics (OLMB) to better understand the role as well as the possible effect of continuous and dynamic multibiometric authentication on professional certification e-examination scores and durations.
The sample used in this study was based on participants who were all professional members of a technology professional certification organization. The methodology used to collect data was a posttest only, multiple, non-equivalent groups quasi-experiment, where age, gender, and Information Technology Proficiency (ITP) were also recorded. The analyses performed in this study included pre-analysis data screening, reliability analyses for each instrument used, and the main analysis to address each hypothesis. Group affiliation, i.e. type of authentication methods, was found to have no significant effect on differences among exam scores and durations. While there was a clear path of increased mean e-examination score as authentication method was relaxed, it was evident from the analysis that these were not significant differences. Age was found to have a significant effect on exam scores where younger participants were found to have higher exam scores and lower exam durations than older participants. Gender was not found to have a significant effect on exam scores nor durations. ITP was found to have a significant effect on exam scores and durations where greater scores with the ITP instrument indicated greater exam scores and lower exam durations. This study's results can help organizations better understand the role, possible effect, and potential application of continuous and dynamic multibiometric authentication as a justifiable approach when compared with the more common authentication approach of User Identifier (UID) and password, both in professional certification e-examinations as well as in an online environment.
|
2 |
Person Identification by Fingerprints and Voice / Asmens identifikavimas pagal pirštų atspaudus ir balsąKisel, Andrej 30 December 2010 (has links)
This dissertation focuses on person identification problems and proposes solutions to overcome those problems. First part is about fingerprint features extraction algorithm performance evaluation. Modifications to a known synthesis algorithm are proposed to make it fast and suitable for performance evaluation. Matching of deformed fingerprints is discussed in the second part of the work. New fingerprint matching algorithm that uses local structures and does not perform fingerprint alignment is proposed to match deformed fingerprints. The use of group delay features of linear prediction model for speaker recognition is proposed in the third part of the work. New similarity metric that uses group delay features is described. It is demonstrated that automatic speaker recognition system with proposed features and similarity metric outperforms traditional speaker identification systems . Multibiometrics using fingerprints and voice is addressed in the last part of the dissertation. / Penkiose disertacijos darbo dalyse nagrinėjamos žmogaus identifikavimo pagal pirštų atspaudus ir balsą problemos ir siūlomi jų sprendimai. Pirštų atspaudų požymių išskyrimo algoritmų kokybės įvertinimo problemą siūloma spręsti panaudojant sintezuotus pirštų atspaudus. Darbe siūlomos žinomo pirštų atpaudų sintezės algoritmo modifikacijos, kurios leidžia sukurti piršto atspaudo vaizdą su iš anksto nustatytomis charakteristikomis ir požymiais bei pagreitina sintezės procesą. Pirštų atspaudų požymių palyginimo problemos yra aptartos ir naujas palyginimo algoritmas yra siūlomas deformuotų pirštų palyginimui. Algoritmo kokybė yra įvertinta ant viešai prieinamų ir vidinių duomenų bazių. Naujas asmens identifikavimo pagal balsą metodas remiantis tiesinės prognozės modelio grupinės delsos požymiais ir tų požymių palyginimo metrika kokybės prasme lenkia tradicinius asmens identifikavimo pagal balsą metodus. Pirštų ir balso įrašų nepriklausomumas yra irodytas ir asmens atpažinimas pagal balsą ir pirštų atspaudus kartu yra pasiūlytas siekiant išspręsti bendras biometrinių sistemų problemas.
|
3 |
Assimetria humana no reconhecimento multibiométrico. / Human asymmetry in multibiometric recognition.Vertamatti, Rodolfo 13 October 2011 (has links)
A combinação de fontes biométricas não redundantes da multibiometria supera a precisão de cada fonte individual (monobiometria). Além do mais, dois problemas em biometria, ruído e ataques de usurpadores, podem ser minimizados pelo uso de múltiplos sensores e biometria multimodal. Entretanto, se as similaridades estão em todos traços biométricos, como em gêmeos monozigotos (MZ), o processamento de múltiplas fontes não melhora a performance. Para distinguir extrema similitude, influências epigenéticas e ambientais são mais importantes do que o DNA herdado. Esta tese examina a plasticidade fenotípica na assimetria humana como uma ferramenta para melhorar a multibiometria. A técnica de Processamento Bilateral (PB) é introduzida para analisar discordâncias em lados esquerdo e direito dos traços biométricos. PB foi testado com imagens de espectro visível e infravermelho usando Correlação Cruzada, Wavelets e Redes Neurais Artificiais. Os traços selecionados foram dentes, orelhas, íris, impressões digitais, narinas e bochechas. PB acústico também foi implementado para avaliação da assimetria vibracional durante sons vocálicos e comparado a um sistema reconhecedor de locutores com parametrização via MFCC (Mel Frequency Cepstral Coefficients) e classificado por Quantização Vetorial. Para o PB de imagens e acústico foram coletadas 20 amostras por traço biométrico durante um ano de nove irmãos masculinos adultos. Com propósito de teste, as biometrias esquerdas foram impostoras às biometrias direitas do mesmo indivíduo e vice-versa, o que levou a 18 entidades serem identificadas por traço biométrico. Resultados alcançaram identificação total em todas biometrias tratadas com PB, comparado a um máximo de 44% de identificação correta sem PB. Esta tese conclui que peculiaridades bilaterais melhoram a performance multibiométrica e podem complementar qualquer abordagem de reconhecimento. / Combination of non-redundant biometric sources in multibiometrics overcomes individual source accuracy (monobiometrics). Moreover, two problems in biometrics, noise and impostor attacks, can be minimized by the use of multi-sensor, multi-modal biometrics. However, if similarities are in all traits, as in monozygotic twins (MZ), multiple source processing does not improve performance. To distinguish extreme similitude, epigenetic and environmental influences are more important than DNA inherited. This thesis examines phenotypic plasticity in human asymmetry as a tool to ameliorate multibiometrics. Bilateral Processing (BP) technique is introduced to analyze discordances in left and right trait sides. BP was tested in visible and infrared spectrum images using Cross-Correlation, Wavelets and Artificial Neural Networks. Selected traits were teeth, ears, irises, fingerprints, nostrils and cheeks. Acoustic BP was also implemented for vibration asymmetry evaluation during voiced sounds and compared to a speaker recognition system parameterized via MFCC (Mel Frequency Cepstral Coefficients) and classified by Vector Quantization. Image and acoustic BP gathered 20 samples per biometric trait during one year from nine adult male brothers. For test purposes, left biometrics was impostor to right biometrics from the same individual and vice-versa, which led to 18 entities to be identified per trait. Results achieved total identification in all biometrics treated with BP, compared to maximum 44% of correct identification without BP. This study concludes that bilateral peculiarities improve multibiometric performance and can complement any recognition approach.
|
4 |
Assimetria humana no reconhecimento multibiométrico. / Human asymmetry in multibiometric recognition.Rodolfo Vertamatti 13 October 2011 (has links)
A combinação de fontes biométricas não redundantes da multibiometria supera a precisão de cada fonte individual (monobiometria). Além do mais, dois problemas em biometria, ruído e ataques de usurpadores, podem ser minimizados pelo uso de múltiplos sensores e biometria multimodal. Entretanto, se as similaridades estão em todos traços biométricos, como em gêmeos monozigotos (MZ), o processamento de múltiplas fontes não melhora a performance. Para distinguir extrema similitude, influências epigenéticas e ambientais são mais importantes do que o DNA herdado. Esta tese examina a plasticidade fenotípica na assimetria humana como uma ferramenta para melhorar a multibiometria. A técnica de Processamento Bilateral (PB) é introduzida para analisar discordâncias em lados esquerdo e direito dos traços biométricos. PB foi testado com imagens de espectro visível e infravermelho usando Correlação Cruzada, Wavelets e Redes Neurais Artificiais. Os traços selecionados foram dentes, orelhas, íris, impressões digitais, narinas e bochechas. PB acústico também foi implementado para avaliação da assimetria vibracional durante sons vocálicos e comparado a um sistema reconhecedor de locutores com parametrização via MFCC (Mel Frequency Cepstral Coefficients) e classificado por Quantização Vetorial. Para o PB de imagens e acústico foram coletadas 20 amostras por traço biométrico durante um ano de nove irmãos masculinos adultos. Com propósito de teste, as biometrias esquerdas foram impostoras às biometrias direitas do mesmo indivíduo e vice-versa, o que levou a 18 entidades serem identificadas por traço biométrico. Resultados alcançaram identificação total em todas biometrias tratadas com PB, comparado a um máximo de 44% de identificação correta sem PB. Esta tese conclui que peculiaridades bilaterais melhoram a performance multibiométrica e podem complementar qualquer abordagem de reconhecimento. / Combination of non-redundant biometric sources in multibiometrics overcomes individual source accuracy (monobiometrics). Moreover, two problems in biometrics, noise and impostor attacks, can be minimized by the use of multi-sensor, multi-modal biometrics. However, if similarities are in all traits, as in monozygotic twins (MZ), multiple source processing does not improve performance. To distinguish extreme similitude, epigenetic and environmental influences are more important than DNA inherited. This thesis examines phenotypic plasticity in human asymmetry as a tool to ameliorate multibiometrics. Bilateral Processing (BP) technique is introduced to analyze discordances in left and right trait sides. BP was tested in visible and infrared spectrum images using Cross-Correlation, Wavelets and Artificial Neural Networks. Selected traits were teeth, ears, irises, fingerprints, nostrils and cheeks. Acoustic BP was also implemented for vibration asymmetry evaluation during voiced sounds and compared to a speaker recognition system parameterized via MFCC (Mel Frequency Cepstral Coefficients) and classified by Vector Quantization. Image and acoustic BP gathered 20 samples per biometric trait during one year from nine adult male brothers. For test purposes, left biometrics was impostor to right biometrics from the same individual and vice-versa, which led to 18 entities to be identified per trait. Results achieved total identification in all biometrics treated with BP, compared to maximum 44% of correct identification without BP. This study concludes that bilateral peculiarities improve multibiometric performance and can complement any recognition approach.
|
5 |
Fusão de métodos baseados em minúcias e em cristas para reconhecimento de impressões digitaisFalguera, Fernanda Pereira Sartori [UNESP] 04 July 2008 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:29:40Z (GMT). No. of bitstreams: 0
Previous issue date: 2008-07-04Bitstream added on 2014-06-13T19:38:57Z : No. of bitstreams: 1
falguera_fps_me_sjrp.pdf: 3832818 bytes, checksum: 1ca4e6b68ff66693475c6e5caed03e88 (MD5) / Biometria refere-se ao uso de características físicas (impressões digitais, íris, retina) ou comportamentais (assinatura, voz) para a identificação humana. As impressões digitais são formadas por cristas e minúcias. As cristas são linhas distribuídas paralelamente com uma orientação e um espaçamento característico e as minúcias representam os vários modos pelos quais uma crista pode se tornar descontínua. Graças a sua universalidade, unicidade e permanência, as impressões digitais tornaram-se as características biométricas mais amplamente utilizadas. Entretanto, considerar o reconhecimento automático de impressões digitais um problema totalmente resolvido é um erro muito comum. Nenhum sistema de reconhecimento de impressões digitais proposto até hoje é infalível, nenhum garante taxas de erro nulas. Imagens de baixa qualidade e com pequena área de sobreposição entre a imagem template e a imagem de consulta ainda representam um desafio para os métodos de reconhecimento de impressões digitais mais utilizados, os métodos baseados no casamento de pontos de minúcias. Uma das maneiras de superar as limitações e melhorar a acurácia de um sistema biométrico é o uso da multibiometria, isto é, a combinação de diferentes tipos de informação em um sistema de reconhecimento biométrico. Neste contexto, esta dissertação de mestrado objetiva aprimorar a acurácia dos sistemas de reconhecimento de impressões digitais por meio da fusão de métodos baseados em minúcias e em cristas. Para tanto, foram implementadas técnicas de fusão no nível de pontuação, classificação e decisão. No nível de pontuação, a fusão propiciou uma redução na taxa de erro igual (EER) de 42,53% em relação ao método mais preciso. Para o nível de classificação, a fusão significou um aumento de 75% na taxa de recuperação correta... / Biometrics refers to the use of physical (fingerprints, iris, retina) or behavioral (signature, voice) characteristics to determine the identity of a person. Fingerprints are formed by ridges and minutiae. The ridges are lines distributed in parallel with an orientation and a characteristic spacing and the minutiae represent the several ways a ridge can become discontinued. As to its universality, uniqueness and permanence, the fingerprints became the most widely used biometric characteristic. However, it is a common mistake to consider the automatic fingerprint recognition as a totally solved problem. No fingerprint recognition system proposed until now is infallible, none of them guarantee null error rates. Poor quality images and when just a small area of overlap between the template and the query images exists are still a complex challenge to the most used fingerprint recognition methods, the methods based on minutiae points matching. One of the possibilities to overcome the limitations and improve the accuracy of a biometric system is the use of multibiometrics, the combination of different kinds of information in a biometric system. In this context, this master thesis aims to improve the accuracy of fingerprint recognition systems through the fusion of minutiae based and ridge based methods. To achieve this, fusion techniques on score, rank and decision levels were implemented. For the score level, the fusion lead to a reduction of the Equal Error Rate to 42.53% compared to the most precise method. For the rank level, the fusion meant an increase of 75% in the Correct Retrieval Rate. And, in the decision level fusion the Recognition Rate changed from 99.25% to 99.75%. The results have demonstrated that the fusion of minutiae based and ridge based methods can represent a significant accuracy improvement for the fingerprint recognition systems.
|
6 |
Asmens identifikavimas pagal pirštų atspaudus ir balsą / Person Identification by fingerprints and voiceKisel, Andrej 30 December 2010 (has links)
Penkiose disertacijos darbo dalyse nagrinėjamos asmens identifikavimo pagal pirštų atspaudus ir balsą problemos ir siūlomi jų sprendimai. Pirštų atspaudų požymių išskyrimo algoritmų kokybės įvertinimo problemą siūloma spręsti panaudojant sintezuotus pirštų atspaudus. Darbe siūlomos žinomo pirštų atpaudų sintezės algoritmo modifikacijos, kurios leidžia sukurti piršto atspaudo vaizdą su iš anksto nustatytomis charakteristikomis ir požymiais bei pagreitina sintezės procesą. Pirštų atspaudų požymių palyginimo problemos yra aptartos ir naujas palyginimo algoritmas yra siūlomas deformuotų pirštų palyginimui. Algoritmo kokybė yra įvertinta naudojant viešai prieinamas ir vidines duomenų bazes. Naujas asmens identifikavimo pagal balsą metodas remiantis tiesinės prognozės modelio grupinės delsos požymiais ir tų požymių palyginimo metrika kokybės prasme lenkia tradicinius asmens identifikavimo pagal balsą metodus. Pirštų ir balso įrašų nepriklausomumas yra irodytas ir asmens atpažinimas pagal balsą ir pirštų atspaudus kartu yra pasiūlytas siekiant išspręsti bendras biometrinių sistemų problemas. / This dissertation focuses on person identification problems and proposes solutions to overcome those problems. First part is about fingperprint feaures extraction algorithm performance evaluaiton. Modifications to a known synthesis algorithm are proposed to make it fast and suitable for performance evaluation. Matching of deformed fingerprints is discussed in the second part of the work. New fingerprint matching algorithm that uses local structures and does not perform fingerprint alignment is proposed to match deformed fingerprints. The use of group delay features of linear prediciton model for speaker identification is proposed in the third part of the work. New similarity metric that uses group delay features is described. It is demonstrated that automatic speaker identification system with proposed features and similarity metric outperforms traditional speaker identification systems. Multibiometrics using fingerprints and voice is adressed in the last part of the dissertation.
|
7 |
Fusão de métodos baseados em minúcias e em cristas para reconhecimento de impressões digitais /Falguera, Fernanda Pereira Sartori. January 2008 (has links)
Orientador: Aparecido Nilceu Marana / Banca: Fátima de Lourdes dos Santos Nunes Marques / Banca: Marcos Antônio Cavenaghi / Resumo: Biometria refere-se ao uso de características físicas (impressões digitais, íris, retina) ou comportamentais (assinatura, voz) para a identificação humana. As impressões digitais são formadas por cristas e minúcias. As cristas são linhas distribuídas paralelamente com uma orientação e um espaçamento característico e as minúcias representam os vários modos pelos quais uma crista pode se tornar descontínua. Graças a sua universalidade, unicidade e permanência, as impressões digitais tornaram-se as características biométricas mais amplamente utilizadas. Entretanto, considerar o reconhecimento automático de impressões digitais um problema totalmente resolvido é um erro muito comum. Nenhum sistema de reconhecimento de impressões digitais proposto até hoje é infalível, nenhum garante taxas de erro nulas. Imagens de baixa qualidade e com pequena área de sobreposição entre a imagem template e a imagem de consulta ainda representam um desafio para os métodos de reconhecimento de impressões digitais mais utilizados, os métodos baseados no casamento de pontos de minúcias. Uma das maneiras de superar as limitações e melhorar a acurácia de um sistema biométrico é o uso da multibiometria, isto é, a combinação de diferentes tipos de informação em um sistema de reconhecimento biométrico. Neste contexto, esta dissertação de mestrado objetiva aprimorar a acurácia dos sistemas de reconhecimento de impressões digitais por meio da fusão de métodos baseados em minúcias e em cristas. Para tanto, foram implementadas técnicas de fusão no nível de pontuação, classificação e decisão. No nível de pontuação, a fusão propiciou uma redução na taxa de erro igual (EER) de 42,53% em relação ao método mais preciso. Para o nível de classificação, a fusão significou um aumento de 75% na taxa de recuperação correta... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Biometrics refers to the use of physical (fingerprints, iris, retina) or behavioral (signature, voice) characteristics to determine the identity of a person. Fingerprints are formed by ridges and minutiae. The ridges are lines distributed in parallel with an orientation and a characteristic spacing and the minutiae represent the several ways a ridge can become discontinued. As to its universality, uniqueness and permanence, the fingerprints became the most widely used biometric characteristic. However, it is a common mistake to consider the automatic fingerprint recognition as a totally solved problem. No fingerprint recognition system proposed until now is infallible, none of them guarantee null error rates. Poor quality images and when just a small area of overlap between the template and the query images exists are still a complex challenge to the most used fingerprint recognition methods, the methods based on minutiae points matching. One of the possibilities to overcome the limitations and improve the accuracy of a biometric system is the use of multibiometrics, the combination of different kinds of information in a biometric system. In this context, this master thesis aims to improve the accuracy of fingerprint recognition systems through the fusion of minutiae based and ridge based methods. To achieve this, fusion techniques on score, rank and decision levels were implemented. For the score level, the fusion lead to a reduction of the Equal Error Rate to 42.53% compared to the most precise method. For the rank level, the fusion meant an increase of 75% in the Correct Retrieval Rate. And, in the decision level fusion the Recognition Rate changed from 99.25% to 99.75%. The results have demonstrated that the fusion of minutiae based and ridge based methods can represent a significant accuracy improvement for the fingerprint recognition systems. / Mestre
|
8 |
Improving face recognition with multispectral fusion and support vector machines /Chiachia, Giovani. January 2009 (has links)
Orientador: Aparecido Nilceu Marana / Banca: Roberto Marcondes Cesar Junior / Banca: Ivan Rizzo Guilherme / Resumo: O reconhecimento facial é uma das principais formas de identificação humana. Apesar das pesquisas em reconhecimento facial automático terem crescido substancialmente ao longo dos últimos 35 anos, identificar pessoas a partir da face continua sendo um desafio para as áreas de Visão Computacional e Reconhecimento de Padrões. Em função dos cenários variarem desde a identificação a partir de fotografias até o reconhecimento baseado em vídeos sem nenhum tipo de controle ao serem gravados, os maiores desafios estão relacionados à independência contra diferentes tipos de iluminação, pose e expressão. O objetivo desta dissertação é propor técnicas que possam contribuir para a melhoria dos sistemas de reconhecimento facial. A primeira técnica endereça o problema da iluminação através da fusão dos espectros visível e infravermelho da face. Através desta abordagem, as taxas de reconhecimento foram melhoradas em 2.07% enquanto a taxa de erro igual (EER) foi reduzida em 45.47%. A segunda técnica trata do caso da extração e classificação de características faciais. Ela propõe um novo modelo para reconhecimento facial através do uso de características extraídas por Histogramas Census e de uma técnica de reconhecimento de padrões baseada em Máquinas de Vetores de Suporte (SVMs). Este outro grupo de experimentos nos possibilitou aumentar a precisão do reconhecimento no teste FERET fa/fb em 0.5%. Além destes resultados, algumas contribuições adicionais deste trabalho que merecem ser destacadas são a análise da dependência estatística entre classificadores de espectros diferentes e considerações sobre o comportamento de uma única C-SVC SVM para identificação de pessoas de forma eficaz. / Abstract: Face recognition is one of the primary ways of human identification. Although researches on automated face recognition have broadly increased along the last 35 years, it remains a challenging task in the fields of Computer Vision and Pattern Recognition. As the scenarios varies from static and constrained photographs to uncontrolled video images, the challenging issues on automatic face recognition are usually related with variations in illumination, pose and expressions. The goal of this master thesis is to propose techniques for the improvement of face recognition systems. The first technique addresses the problem of illumination by fusing the visible and the infrared spectra of the face. With this approach the recognition rates were improved in 2.07% while the Equal Error Rate (EER) were reduced in 45.47%. The second technique addresses the issue of face features extraction and classification. It proposes a new framework for face recognition by using features extracted by Census Histograms and a pattern recognition technique based on Support Vector Machines (SVMs). This other group of experiments enabled us to increase the recognition accuracy in the FERET fa/fb test in 0.5%. Beyond these results, additional contributions of this work that deserve to be highlighted are the statistical dependency analysis between face recognition systems based on different spectra and a better comprehension about the behavior of a single C-SVC SVM to reliably predict faces identities. / Mestre
|
9 |
Improving face recognition with multispectral fusion and support vector machinesChiachia, Giovani [UNESP] 19 June 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:29:40Z (GMT). No. of bitstreams: 0
Previous issue date: 2009-06-19Bitstream added on 2014-06-13T18:07:45Z : No. of bitstreams: 1
chiachia_g_me_sjrp.pdf: 1197775 bytes, checksum: a782f5b01605aa2a8b8bb080a56b3cad (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O reconhecimento facial é uma das principais formas de identificação humana. Apesar das pesquisas em reconhecimento facial automático terem crescido substancialmente ao longo dos últimos 35 anos, identificar pessoas a partir da face continua sendo um desafio para as áreas de Visão Computacional e Reconhecimento de Padrões. Em função dos cenários variarem desde a identificação a partir de fotografias até o reconhecimento baseado em vídeos sem nenhum tipo de controle ao serem gravados, os maiores desafios estão relacionados à independência contra diferentes tipos de iluminação, pose e expressão. O objetivo desta dissertação é propor técnicas que possam contribuir para a melhoria dos sistemas de reconhecimento facial. A primeira técnica endereça o problema da iluminação através da fusão dos espectros visível e infravermelho da face. Através desta abordagem, as taxas de reconhecimento foram melhoradas em 2.07% enquanto a taxa de erro igual (EER) foi reduzida em 45.47%. A segunda técnica trata do caso da extração e classificação de características faciais. Ela propõe um novo modelo para reconhecimento facial através do uso de características extraídas por Histogramas Census e de uma técnica de reconhecimento de padrões baseada em Máquinas de Vetores de Suporte (SVMs). Este outro grupo de experimentos nos possibilitou aumentar a precisão do reconhecimento no teste FERET fa/fb em 0.5%. Além destes resultados, algumas contribuições adicionais deste trabalho que merecem ser destacadas são a análise da dependência estatística entre classificadores de espectros diferentes e considerações sobre o comportamento de uma única C-SVC SVM para identificação de pessoas de forma eficaz. / Face recognition is one of the primary ways of human identification. Although researches on automated face recognition have broadly increased along the last 35 years, it remains a challenging task in the fields of Computer Vision and Pattern Recognition. As the scenarios varies from static and constrained photographs to uncontrolled video images, the challenging issues on automatic face recognition are usually related with variations in illumination, pose and expressions. The goal of this master thesis is to propose techniques for the improvement of face recognition systems. The first technique addresses the problem of illumination by fusing the visible and the infrared spectra of the face. With this approach the recognition rates were improved in 2.07% while the Equal Error Rate (EER) were reduced in 45.47%. The second technique addresses the issue of face features extraction and classification. It proposes a new framework for face recognition by using features extracted by Census Histograms and a pattern recognition technique based on Support Vector Machines (SVMs). This other group of experiments enabled us to increase the recognition accuracy in the FERET fa/fb test in 0.5%. Beyond these results, additional contributions of this work that deserve to be highlighted are the statistical dependency analysis between face recognition systems based on different spectra and a better comprehension about the behavior of a single C-SVC SVM to reliably predict faces identities.
|
Page generated in 0.0514 seconds