• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 82
  • 52
  • 15
  • 15
  • 10
  • 8
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 216
  • 115
  • 62
  • 60
  • 52
  • 47
  • 43
  • 38
  • 38
  • 33
  • 30
  • 29
  • 26
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Passive control of mechanical systems

Adolfsson, Jesper January 2001 (has links)
No description available.
62

Modeling and Control of Flexible Manipulators

Moberg, Stig January 2010 (has links)
Industrial robot manipulators are general-purpose machines used for industrial automation in order to increase productivity, flexibility, and product quality. Other reasons for using industrial robots are cost saving, and elimination of hazardous and unpleasant work. Robot motion control is a key competence for robot manufacturers, and the current development is focused on increasing the robot performance, reducing the robot cost, improving safety, and introducing new functionalities.  Therefore, there is a need to continuously improve the mathematical models and control methods in order to fulfil conflicting requirements, such as increased performance of a weight-reduced robot, with lower mechanical stiffness and more complicated vibration modes. One reason for this development of the robot mechanical structure is of course cost-reduction, but other benefits are also obtained, such as lower environmental impact, lower power consumption, improved dexterity, and higher safety. This thesis deals with different aspects of modeling and control of flexible, i.e., elastic, manipulators. For an accurate description of a modern industrial manipulator, this thesis shows that the traditional flexible joint model, described in literature, is not sufficient. An improved model where the elasticity is described by a number of localized multidimensional spring-damper pairs is therefore proposed. This model is called the extended flexible joint model. The main contributions of this work are the design and analysis of identification methods, and of inverse dynamics control methods, for the extended flexible joint model. The proposed identification method is a frequency-domain non-linear gray-box method, which is evaluated by the identification of a modern six-axes robot manipulator. The identified model gives a good description of the global behavior of this robot. The inverse dynamics problem is discussed, and a solution methodology is proposed. This methodology is based on the solution of a differential algebraic equation (DAE). The inverse dynamics solution is then used for feedforward control of both a simulated manipulator and of a real robot manipulator. The last part of this work concerns feedback control. First, a model-based nonlinear feedback control (feedback linearization) is evaluated and compared to a model-based feedforward control algorithm. Finally, two benchmark problems for robust feedback control of a flexible manipulator are presented and some proposed solutions are analyzed.
63

MSC Adams modelling of mechanical system in A400M Crew Entrance Door

Lindberg, David January 2012 (has links)
Saab Aerostructures has developed the Crew Entrance Door (CED) for Airbus A400M. Airbus has decided some different load cases for which the Crew Entrance Door must be built to withstand without something breaking down. The door is maneuvered by a mechanical system and the load cases are essential for the sizing of the components in the mechanical system. Saab has previously used MS Excel to analytically calculate resulting forces in the mechanical system due to external and/or internal loads in the different load cases. This report describes how the mechanical system for A400M Crew Entrance Door instead can be modeled and solved numerically with the computer program MSC Adams/View. Creating a model of a mechanical system in MSC Adams/View proved to be easy and fairly quick. The benefit of working with MSC Adams instead of MS Excel is that it is quicker and more user friendly. The major differences when comparing results were believed to be an effect of comparing results from a kinematic model with results from a dynamic model. Therefore it is in the Authors opinion that the analytical method to calculate resulting forces with MS Excel can be replaced by numerical calculations with MSC Adams/View. However, apart from calculating reaction forces there are additional post-simulation calculations for which it is perhaps more beneficial to use MS Excel. To do these post-simulation calculations in MS Excel it is easy to use exported results from MSC Adams. If Saab Aerostructures decide to start working with MSC Adams/View and if Saab wants geometry to be imported to the model, then an advise from the Author is to have a software installed which can convert step-files (*.stp or *.step) to the MSC Adams preferred file format Parasolid (*.xmt_txt or *.x_t). The software should also be able to repair geometry which will greatly increase mass accuracy.
64

Parametric study of a dog clutch used in a transfer case for trucks

Eriksson, Fredrik, Kuttikkal, Joseph Linu, Mehari, Amanuel January 2013 (has links)
Normally the trucks with four wheel drive option will be running in rear wheel drives and the front wheels will be rotating freely. In extreme tough driving conditions, the risk for getting stopped or slipping the rear wheels in mud is high. When the driver tries to engage the four wheel drive option and due to the difference in relative rotational speed of the dog clutch parts, there is a risk for slipping off or bouncing back of the dog clutch. After studying the importance of gear geometry and a few parameters, the team ended up with a new design and the performance of the design found satisfactory when simulated in MSC ADAMS.
65

Micromechanics of Fiber Networks Including Nonlinear Hysteresis and its Application to Multibody Dynamic Modeling of Piano Mechanisms

Masoudi, Ramin 09 April 2012 (has links)
Many engineering applications make use of fiber assemblies under compression. Unfortunately, this compression behavior is difficult to predict, due to nonlinear compliance, hysteresis, and anelasticity. The main objective of this research is to develop an algorithm which is capable of incorporating the microscale features of the fiber network into macroscopic scale applications, particularly the modeling of contact mechanics in multibody systems. In micromechanical approaches, the response of a fiber assembly to an external force is related to the response of basic fiber units as well as the interactions between these units, i.e. the mechanical properties of the constituent fibers and the architecture of the assembly will both have a significant influence on the overall response of the assembly to compressive load schemes. Probabilistic and statistical principles are used to construct the structure of the uniformly-distributed random network. Different micromechanical approaches in modeling felt, as a nonwoven fiber assembly with unique mechanical properties, are explored to gain insight into the key mechanisms that influence its compressive response. Based on the deformation processes and techniques in estimating the number of fiber contacts, three micromechanical models are introduced: (1) constitutive equations for micromechanics of three-dimensional fiberwebs under small strains, in which elongation of the fibers is the key deformation mechanism, adapted for large deformation ranges; (2) micromechanical model based on the rate theory of granular media, in which bending and torsion of fibers are the predominant elemental deformations used to calculate compliances of a particular contact; and (3) a mechanistic model developed using the general deformation theory of the fiber networks with fiber bending at the micro level and a binomial distribution of fiber contacts. A well-established mechanistic model, based on fiber-to-fiber friction at the micro level, is presented for predicting the hysteresis in compression behavior of wool fiberwebs. A novel algorithm is introduced to incorporate a hysteretic micromechanical model - a combination of the mechanistic model with microstructural fiber bending, which uses a binomial distribution of the number of fiber-to-fiber contacts, and the friction-based hysteresis idea - into the contact mechanics of multibody simulations with felt-lined interacting bodies. Considering the realistic case in which a portion of fibers slides, the fiber network can be treated as two subnetworks: one from the fibers with non-sliding contact points, responsible for the elastic response of the network, and the other consisting of fibers that slide, generating irreversible hysteresis phenomenon in the fiberweb compression. A parameter identification is performed to minimize the error between the micromechanical model and the elastic part of the loading-unloading experimental data for felt, then contribution of friction was added to the obtained mechanistic compression-recovery curves. The theoretical framework for constructing a mechanistic multibody dynamic model of a vertical piano action is developed, and its general validity is established using a prototype model. Dynamic equations of motion are derived symbolically for the piano action using a graph-theoretic formulation. The model fidelity is increased by including hammer-string interaction, backcheck wire and hammer shank flexibility, a sophisticated key pivot model, nonlinear models of bridle strap and butt spring, and a novel mathematical contact model. The developed nonlinear hysteretic micromechanical model is used for the hammer-string interaction to affirm the reliability and applicability of the model in general multibody dynamic simulations. In addition, dynamic modeling of a flexible hub-beam system with an eccentric tip mass including nonlinear hysteretic contact is studied. The model represents the mechanical finger of an actuator for a piano key. Achieving a desired finger-key contact force profile that replicates that of a real pianist's finger requires dynamic and vibration analysis of the actuator device. The governing differential equations for the dynamic behavior of the system are derived using Euler-Bernoulli beam theory along with Lagrange's method. To discretize the distributed parameter flexible beam in the model, the finite element method is utilized. Excessive vibration due to the arm flexibility and also the rigid-body oscillations of the arm, especially during the period of key-felt contact, is eliminated utilizing a simple grounded rotational dashpot and a grounded rotational dashpot with a one-sided relation. The effect on vibration behavior attributed to these additional components is demonstrated using the simulated model.
66

Efficient and Robust Approaches to the Stability Analysis and Optimal Control of Large-Scale Multibody Systems

Wang, Jielong 14 June 2007 (has links)
Linearized stability analysis methodologies, system identification algorithms and optimal control approaches that are applicable to large scale, flexible multibody dynamic systems are presented in this thesis. For stability analysis, two classes of closely related algorithms based on a partial Floquet approach and on an autoregressive approach, respectively, are presented in a common framework that underlines their similarity and their relationship to other methods. The robustness of the proposed approach is improved by using optimized signals that are derived from the proper orthogonal modes of the system. Finally, a signal synthesis procedure based on the identified frequencies and damping rates is shown to be an important tool for assessing the accuracy of the identified parameters; furthermore, it provides a means of resolving the frequency indeterminacy associated with the eigenvalues of the transition matrix for periodic systems. For system identification, a robust algorithm is developed to construct subspace plant models. This algorithm uniquely combines the methods of minimum realization and subspace identification. It bypasses the computation of Markov parameters because the free impulse response of the system can be directly computed in the present computational environment. Minimum realization concepts were applied to identify the stability and output matrices. On the other hand, subspace identification algorithms construct a state space plant model of linear system by using computationally expensive oblique matrix projection operations. The proposed algorithm avoids this burden by computing the Kalman filter gain matrix and model dependency on external inputs in a small sized subspace. Balanced model truncation and similarity transformation form the theoretical foundation of proposed algorithm. Finally, a forward innovation model is constructed and estimates the input-output behavior of the system within a specified level of accuracy. The proposed system identification algorithms are computationally inexpensive and consist of purely post processing steps that can be used with any multi-physics computational tool or with experimental data. Optimal control methodologies that are applicable to comprehensive large-scale flexible multibody systems are presented. A classical linear quadratic Gaussian controller is designed, including subspace plant identification, the evaluation of linear quadratic regulator feedback gain and Kalman filter gain matrices and online control implementation.
67

Modeling friction phenomena and elastomeric dampers in multibody dynamics analysis

Ju, Changkuan 19 August 2009 (has links)
The first part of this dissertation focuses on the development, implementation and validation of models that capture the behavior of joints in a realistic manner. These models are presented within the framework of finite element based, nonlinear multibody dynamics formulations that ensure unconditional nonlinear stability of the computation for systems of arbitrary topology. The proposed approach can be divided into three parts. First, the joint configuration: this purely kinematic part deals with the description of the configuration of the joint and the evaluation of the relative distance and relative tangential velocity between the contacting bodies. Second, the contact conditions: in most cases, contact at the joint is of an intermittent nature. And finally, the contact forces: this last part deals with the evaluation of the forces that arise at the interface between contacting bodies. The advantage of the proposed approach is that the three parts of the problem can be formulated and implemented independently. Many articulated rotor helicopters use hydraulic dampers, which provide high levels of damping but are also associated with high maintenance costs and difficulties in evaluating their conditions due to the presence of seals, lubricants and numerous moving parts, all operating in a rotating frame. To avoid problems associated with hydraulic dampers, the industry is now switching to elastomeric lead-lag dampers that feature simpler mechanical design, lower part count, and result in "dry" rotors. However, the design of robust elastomeric dampers is hampered by the lack of reliable analytical tools that can predict their damping behavior in the presence of large multi-frequency motions experienced by the rotor and thus the damper. The second part of this dissertation focuses on the development of an elastomeric damper model which predicts the behavior of the elastomeric damper based on a continuum mechanics approach: the configuration of the damper is modeled using a finite element approach, and material behavior is represented by a set of nonlinear constitutive laws and material parameters. The validated finite element model of the elastomeric damper is then coupled with a comprehensive, multibody dynamics analysis code to predict the behavior of complex systems featuring elastomeric components.
68

Integration of database technology and multibody system analysis

Tisell, Claes January 2000 (has links)
<p>The design process includes many different activities inwhich various computational mechanics tools are used forbehaviour modelling of mechanical systems and their buildingblocks, e.g. machine elements. These tools usually supportlarge and complex models and they produce large quantities ofdata with a high degree of complexity. In these situations,efficient data management and the ability to search and sharedata are important issues to achieve an efficient designprocess. Today, this ability is usually not supported by theindividual applications even though this probably would improveand facilitate the ability to search for data on a higher levelin the engineering information system.</p><p>This work investigates the ability of searching andcomparing analysis data within behaviour models of technicalsystems as well as over the analysis results. This is done byinvestigating the potential benefits of integrating moderndatabase technology with a multibody system (MBS) analysissoftware in the same manner that has been successfully done forbusiness and administrative applications. This has resulted inan implemented pilot system, named MECHAMOS, that integratesthe main-memory resident object-relational database managementsystem (DBMS) AMOSwith the symbolic multibody system (MBS)software SOPHIA operating in MapleV. This provides MECHAMOSwith both symbolic and numeric mathematical capabilities forMBS analysis and data management capabilities to search andcompare engineering data in the database.</p><p>The approach, making data managing tools available in acomputer aided engineering software, considerably improves theanalysis of technical systems. The analysis is brought to ahigher level through the available query language and thedesired data is specified, fairly intuitively, in a query. Whenthe query is processed, the DBMS knows how to retrieve andautomatically derive the required data. As shown in someexamples, the ability to search over stored and derived data inthe database is not restricted to a single MBS-model inMECHAMOS. Because of the implemented materialisation handling,it is also possible to search, combine, and compare data fromseveral simulation results which are based on several differentmodels in the database. This extends the ability to performoptimisation from a traditional parameter study to thepossibility to analyse and compare different technical conceptsthrough the query language and hereby retrieve those conceptsthat fulfil certain requirements. If submodel techniques aresupported, queries over a set of components in the databasewould automatically create, analyse and compare the possibleconcepts. This would assist the designer in choosing the bestcomponents for a design.</p>
69

Passive control of mechanical systems

Adolfsson, Jesper January 2001 (has links)
No description available.
70

Hybrid Numerical Integration Scheme for Highly Oscillatory Dynamical Systems

Gil, Gibin January 2013 (has links)
Computational efficiency of solving the dynamics of highly oscillatory systems is an important issue due to the requirement of small step size of explicit numerical integration algorithms. A system is considered to be highly oscillatory if it contains a fast solution that varies regularly about a slow solution. As for multibody systems, stiff force elements and contacts between bodies can make a system highly oscillatory. Standard explicit numerical integration methods should take a very small step size to satisfy the absolute stability condition for all eigenvalues of the system and the computational cost is dictated by the fast solution. In this research, a new hybrid integration scheme is proposed, in which the local linearization method is combined with a conventional integration method such as the fourth-order Runge-Kutta. In this approach, the system is partitioned into fast and slow subsystems. Then, the two subsystems are transformed into a reduced and a boundary-layer system using the singular perturbation theory. The reduced system is solved by the fourth-order Runge-Kutta method while the boundary-layer system is solved by the local linearization method. This new hybrid scheme can handle the coupling between the fast and the slow subsystems efficiently. Unlike other multi-rate or multi-method schemes, extrapolation or interpolation process is not required to deal with the coupling between subsystems. Most of the coupling effect can be accounted for by the reduced (or quasi-steady-state) system while the minor transient effect is taken into consideration by averaging. In this research, the absolute stability region for this hybrid scheme is derived and it is shown that the absolute stability region is almost independent of the fast variables. Thus, the selection of the step size is not dictated by the fast solution when a highly oscillatory system is solved, in turn, the computational efficiency can be improved. The advantage of the proposed hybrid scheme is validated through several dynamic simulations of a vehicle system including a flexible tire model. The results reveal that the hybrid scheme can reduce the computation time of the vehicle dynamic simulation significantly while attaining comparable accuracy.

Page generated in 0.0649 seconds