• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • 1
  • Tagged with
  • 11
  • 10
  • 7
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude du couplage linéaire et non-linéaire de l' onde hybride basse aux plasmas de Tokamaks.

Preynas, Melanie 05 October 2012 (has links)
Afin de générer des plasmas performants sur de longues durées, un tokamak nécessite des dispositifs de chauffage et de génération de courant additionnels. Des antennes haute-fréquences, délivrant des puissances de plusieurs mégawatts au plasma, sont actuellement utilisées dans de nombreux tokamaks. Pour optimiser les performances de chauffage et de génération de courant obtenues avec le système LH (fréquence de quelques gigahertz), une bonne maitrise du couplage de l'onde émise par l'antenne au plasma de bord est nécessaire. Or, des effets non-linéaires dépendant du niveau de puissance HF injectée dans le plasma perturbent fortement le couplage de l'onde LH pour certains paramètres de bord (densité et température en particulier). Les travaux présentés dans ce manuscrit portent sur l'étude du couplage linéaire et non-linéaire de l'onde LH au plasma de bord. Dans le cadre de l'installation d'une antenne dite « Passive Active Multijunction » en 2009 sur le tokamak Tore Supra visant à tester le système LH proposé pour ITER, la caractérisation du couplage obtenu avec cette antenne a été réalisée à partir d'expériences menées à basse puissance sur Tore Supra. Les résultats, analysés conjointement avec l'utilisation d'un code de couplage (ALOHA), ont ainsi validé les prédictions théoriques prévoyant de bonnes propriétés de couplage à des densités de plasma de bord faibles. Par ailleurs, l'effet pondéromoteur a été clairement identifié comme responsable de la forte détérioration du couplage de l'onde mesurée sous certaines conditions de plasma de bord. / In order to achieve long pulse operation with a tokamak, additional heating and current drive systems are necessary. High frequency antennas, which deliver several megawatts of power to the plasma, are currently used in several tokamaks. Moreover, a good control of the coupling of the wave launched by the antenna to the edge plasma is required to optimize the efficiency of heating and current drive LH systems. However, non-linear effects which depend on the level of injected power in the plasma strongly damage the coupling of the LH wave at particular edge parameters (density and temperature profiles). Results presented in the manuscript deal with the study of the linear and non-linear coupling of the LH wave to the plasma. In the framework of the commissioning of the Passive Active Multijunction antenna in 2009 on the Tore Supra tokamak aiming at validating the LH system suggested for ITER, the characterisation of its coupling properties was realized from low power experiments. The experimental results, which are compared with the linear coupling code ALOHA, have valided the theoretical predictions of good coupling at edge plasma density around the cut-off density. Besides, the ponderomotive effect is clearly identified as responsible for the deterioration in the coupling of the wave, which is measured under particular edge plasma conditions. A theoretical model combining the coupling of the LH wave with the ponderomotive force is suggested to explain the experimental observations.
2

Design of III-V Multijunction Solar Cells on Silicon Substrate

Jain, Nikhil 11 June 2013 (has links)
With looming energy crisis across the globe, achieving high efficiency and low cost solar cells have long been the key objective for photovoltaic researchers. III-V compound semiconductor based multijunction solar cells have been the dominant choice for space power due to their superior performance compared to any other existing solar cell technologies. In spite of unmatched performance of III-V solar cells, Si cells have dominated the terrestrial market due to their lower cost. Most of the current III-V solar cells are grown on Ge or GaAs substrates, which are not only smaller in diameter, but are also more expensive than Si substrate. Direct integration of high efficiency III-V solar cells on larger diameter, cheaper and readily available Si substrate is highly desirable for increased density, low-cost and lightweight photovoltaics. However, the polar-on-nonpolar epitaxy, the thermal mismatch and the 4% lattice mismatch makes the direct growth of GaAs on Si challenging, rendering the metamorphic cell sensitive to dislocations. The focus of this work is to investigate and correlate the impact of threading dislocation density on the performance of lattice-mismatched single-junction (1J) GaAs and dual-junction (2J) InGaP/GaAs solar cells on Si substrate. Utilizing our calibrated dislocation-assisted modeling process, we present the design methodology to optimize the structure of 2J InGaP/GaAs solar cell on Si substrate. Our modeling results suggest an optimistic future for integrating III-V solar cell technology on Si substrate and will be useful for future design and prediction of metamorphic III-V solar cell performance on Si substrate. / Master of Science
3

Modeling, Growth and Characterization of III-V and Dilute Nitride Antimonide Materials and Solar Cells

January 2017 (has links)
abstract: III-V multijunction solar cells have demonstrated record efficiencies with the best device currently at 46 % under concentration. Dilute nitride materials such as GaInNAsSb have been identified as a prime choice for the development of high efficiency, monolithic and lattice-matched multijunction solar cells as they can be lattice-matched to both GaAs and Ge substrates. These types of cells have demonstrated efficiencies of 44% for terrestrial concentrators, and with their upright configuration, they are a direct drop-in product for today’s space and concentrator solar panels. The work presented in this dissertation has focused on the development of relatively novel dilute nitride antimonide (GaNAsSb) materials and solar cells using plasma-assisted molecular beam epitaxy, along with the modeling and characterization of single- and multijunction solar cells. Nitrogen-free ternary compounds such as GaInAs and GaAsSb were investigated first in order to understand their structural and optical properties prior to introducing nitrogen. The formation of extended defects and the resulting strain relaxation in these lattice-mismatched materials is investigated through extensive structural characterization. Temperature- and power-dependent photoluminescence revealed an inhomogeneous distribution of Sb in GaAsSb films, leading to carrier localization effects at low temperatures. Tuning of the growth parameters was shown to suppress these Sb-induced localized states. The introduction of nitrogen was then considered and the growth process was optimized to obtain high quality GaNAsSb films lattice-matched to GaAs. Near 1-eV single-junction GaNAsSb solar cells were produced. The best devices used a p-n heterojunction configuration and demonstrated a current density of 20.8 mA/cm2, a fill factor of 64 % and an open-circuit voltage of 0.39 V, corresponding to a bandgap-voltage offset of 0.57 V, comparable with the state-of-the-art for this type of solar cells. Post-growth annealing was found to be essential to improve Voc but was also found to degrade the material quality of the top layers. Alternatives are discussed to improve this process. Unintentional high background doping was identified as the main factor limiting the device performance. The use of Bi-surfactant mediated growth is proposed for the first time for this material system to reduce this background doping and preliminary results are presented. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2017
4

Modeling, Optimization, and Characterization of High Concentration Photovoltaic Systems Using Multijunction Solar Cells

Sharma, Pratibha January 2017 (has links)
Recent advancements in the development of high-efficiency multijunction solar cells have led to a renewed interest in the design and implementation of high concentration photovoltaic systems. With the emergence of novel materials and design structures, understanding the operation of multijunction solar cells has become a challenging task. Modeling and simulation hence play an important role in the analysis of such devices. In this dissertation, techniques for accurate optoelectrical modeling of concentrating photovoltaic systems, based on multijunction solar cells, are proposed. A 2-dimensional, distributed circuit model is proposed, parametrized to values obtained by numerical modeling of three multijunction cell designs, namely: a three-junction, lattice matched design, a three-junction lattice-mismatched, inverted metamorphic design, and a four-junction,lattice matched design. Cell performance for all the three designs is evaluated under both uniform and nonuniform illumination profiles at high concentrations and efficiency enhancement by optimizing finger spacing is proposed. The effect of luminescent coupling from higher bandgap subcells is also determined.Fresnel-lens based, refractive concentrating optical systems are modeled and optimized using an optical ray-tracing simulator at two different concentrations, with and without a secondary optical element. The corresponding optical efficiency, acceptance angle, and the degree of nonuniformity are determined for each optical system. An integrated approach,combining optical design with electrical modeling is proposed for optimizing the multijunction solar cell in tandem with the corresponding concentrating optics. The approach is validated by on-sun, acceptance angle measurements, using a three-junction,lattice-matched cell. Also, temperature effects are modeled and are experimentally validated for a three-junction, lattice-matched design. Experimental results with a single-junction, dilute-nitride cell, targeted for four-junction operation, are presented as well. A modified distributed circuit model is used for analysis of temperature effects in a four-junction solar cell, and the results under both uniform and nonuniform temperature profiles are presented. When implemented, the designs and their corresponding analyses, may result in new insights into the development of CPV systems, thereby enabling enhanced efficiencies at higher concentrations.
5

Modeling Towards Lattice-Matched Dilute Nitride GaNPAs on Silicon Multijunction Solar Cells

January 2019 (has links)
abstract: Silicon photovoltaics is the dominant contribution to the global solar energy production. As increasing conversion efficiency has become one of the most important factors to lower the cost of photovoltaic systems, the idea of making a multijunction solar cell based on a silicon bottom cell has attracted broad interest. Here the potential of using dilute nitride GaNPAs alloys for a lattice-matched 3-terminal 2-junction Si-based tandem solar cell through multiscale modeling is investigated. To calculate the electronic band structure of dilute nitride alloys with relatively low computational cost, the sp^3 d^5 s^* s_N tight-binding model is chosen, as it has been demonstrated to obtain quantitatively correct trends for the lowest conduction band near Γ, L, and X for dilute-N GaNAs. A genetic algorithm is used to optimize the sp^3 d^5 s^* tight-binding model for pure GaP and GaAs for their optical properties. Then the optimized sp^3 d^5 s^* s_N parametrizations are obtained for GaNP and GaNAs by fitting to experimental bandgap values. After that, a virtual crystal approach gives the Hamiltonian for GaNPAs alloys. From their tight-binding Hamiltonian, the first-order optical response functions of dilute nitride GaNAs, GaNP, and GaNPAs are calculated. As the N mole fraction varies, the calculated critical optical features vary with the correct trends, and agree well with experiment. The calculated optical properties are then used as input for the solar device simulations based on Silvaco ATLAS. For device simulation, a bottom cell model is first constructed to generate performance results that agree well with a demonstrated high-efficiency Si heterojunction interdigitated back contact (IBC) solar cell reported by Kaneka. The front a-Si/c-Si interface is then replaced by a GaP/Si interface for the investigation of the sensitivity of the GaP/Si interface to interface defects in terms of degradation of the IBC cell performance, where we find that an electric field that induces strong band bending can significantly mitigate the impact of the interfacial traps. Finally, a lattice-matched 3-terminal 2-junction tandem model is built for performance simulation by stacking a dilute nitride GaNP(As) cell on the Si IBC cell connected through a GaP/Si interface. The two subcells operate quasi-independently. In this 3-terminal tandem model, traps at the GaP/Si interface still significantly impact the performance of the Si subcell, but their effects on the GaNP subcell are relatively small. Assuming the interfacial traps are well passivated, the tandem efficiency surpasses that of a single-junction Si cell, with values close to 33% based on realistic parameters. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2019
6

Characterization of Radiation Damage in Multi-Junction Solar Cells Using Light-Biased Current Measurements

Korostyshevsky, Aaron 23 October 2008 (has links)
No description available.
7

Analysis of the External Quantum Efficiency of Quantum Dot-enhanced Multijunction Solar Cells

Thériault, Olivier January 2015 (has links)
This thesis focuses on the analysis of the external quantum efficiency of quantum dot-enhanced multi-junction solar cells. Divided in four major parts, it uses the experimental methodology developed in the SUNLAB. At first, a model is introduced to calculate the external quantum efficiency of single and multi-junction solar cells. This model takes into account the semiconductor physics governing the electrical property of the solar cell. It furthermore takes into account the optical transmission and reflection in the semiconductor structure using a transfer matrix method. The calculated curve fits a single junction GaAs solar cell's external quantum efficiency to a high degree of precision. Finally, an InGaP/GaAs/Ge solar cell's external quantum efficiency is calculated and it reproduces accurately the behavior of a measured cell. Second, the reflectivity of a solar cell is studied. An analysis technique involving using the fast Fourier transform of the oscillation in the reflectivity is introduced. This technique extracts the thicknesses of the top and middle subcells. The reflectivity is subsequently calculated using the transfer matrix method and it reproduces the behavior of the measured samples. Third, the effect of the addition of quantum dots in the middle subcell is studied. It is demonstrated that they extend the absorption range of the middle subcell. This is completed by first modeling the quantum mechanical behavior of the electrons and holes in the nanostructure. Their emission and absorption properties are derived. Those derived properties are verified by experimentally measured photoluminescence and electroluminescence of the nanostructures. The resulting model is then compared to experimentally measured external quantum efficiencies of single junction and multi-junction quantum dot-enhanced solar cells. Finally, a study of the bottom subcell artifact is completed. Using the fill-factor bias experiment, each of the contribution of the light coupling and the internal voltage biasing is decoupled. For the measured sample, an optimal voltage of 2.1 V is found to minimize the artifact. At this point, the internal voltage biasing creates an artifact of 1 % and the light coupling artifact is 8 %.
8

Heterogeneous Integration of III-V Multijunction Solar Cells on Si Substrate: Cell Design and Modeling, Epitaxial Growth and Fabrication

Jain, Nikhil 07 May 2015 (has links)
Achieving high efficiency solar cells and concurrently driving down the cell cost has been among the key objectives for photovoltaic researchers to attain a lower levelized cost of energy (LCOE). While the performance of silicon (Si) based solar cells have almost saturated at an efficiency of ~25%, III-V compound semiconductor based solar cells have steadily shown performance improvement at approximately 1% (absolute) increase per year, with a recent record efficiency of 46%. However, the expensive cost has made it challenging for the high efficiency III-V solar cells to compete with the mainstream Si technology. Novel approaches to lower down the cost per watt for III-V solar cells will position them to be among the key contenders in the renewable energy sector. Integration of such high-efficiency III-V multijunction solar cells on significantly cheaper and large area Si substrate has the potential to address the future LCOE roadmaps by unifying the high-efficiency merits of III-V materials with low-cost and abundance of Si. However, the 4% lattice mismatch, thermal mismatch polar-on-nonpolar epitaxy makes the direct growth of GaAs on Si challenging, rendering the metamorphic cell sensitive to dislocations. The focus of this dissertation is to systematically investigate heterogeneously integrated III-V multijunction solar cells on Si substrate. Utilizing a combination of comprehensive solar cell modeling and experimental techniques, we seek to better understand the material properties and correlate them to improve the device performance, with simulation providing a very valuable feedback loop. Key technical design considerations and optimal performance projections are discussed for integrating metamorphic III-V multijunction solar cells on Si substrates for 1-sun and concentrated photovoltaics. Key factors limiting the “GaAs-on-Si” cell performance are identified, and novel approaches focused on minimizing threading dislocation density are discussed. Finally, we discuss a novel epitaxial growth path utilizing high-quality and thin epitaxial Ge layers directly grown on Si substrate to create virtual “Ge-on-Si” substrate for III-V-on-Si multijunction photovoltaics. With the plummeting price of Si solar cells accompanied with the tremendous headroom available for improving the III-V solar cell efficiencies, the future prospects for successful integration of III-V solar cell technology with Si substrate looks very promising to unlock an era of next generation of high-efficiency and low-cost photovoltaics. / Ph. D.
9

Βέλτιστες ηλεκτρικές παράμετροι φωτοβολταϊκών πλαισίων για γήινες και διαστημικές εφαρμογές

Γεωργίτσας, Βασίλειος 04 October 2011 (has links)
Σκοπός αυτής της διπλωματικής εργασίας είναι η θεωρητική μελέτη φωτοβολταϊκών πλαισίων χρησιμοποιούμενων σε διαστημικές εφαρμογές, περιγράφοντας την τεχνολογία και τη λειτουργία τους, καθώς και την ιστορική εξέλιξη τους τις τελευταίες δεκαετίες από το 1950 έως σήμερα. Στα πλαίσια αυτά περιγράφονται οι ηλιακές συστοιχίες για διαστημικές εφαρμογές, οι συνηθισμένοι τύποι ημιαγωγικών υλικών για τα πλαίσια, όπως το πυρίτιο Si και το αρσενιούχο γάλλιο GaAs και οι απαιτήσεις των. Αρχικά, μελετάται ποιες παράμετροι επηρεάζουν την απόδοση των φωτοβολταϊκών κυττάρων στο διάστημα και επιπλέον οι επιπτώσεις της διαστημικής ακτινοβολίας και θερμοκρασίας στην λειτουργία των πλαισίων. Στη συνέχεια παρουσιάζονται τα προηγμένα ηλιακά κύτταρα πυριτίου Si και τα υψηλής απόδοσης άμορφου πυριτίου που παρουσιάζουν βελτιωμένη ενεργειακή απόδοση του πλαισίου. Οι βέλτιστες παράμετροι των δομών για τις διαστημικές εφαρμογές, φαίνεται πλέον να επιτυγχάνονται με τα ευρέως χρησιμοποιούμενα ηλιακά κύτταρα πολυεπαφών multijunction MJ, που είναι κύτταρα ιδιαιτέρου τρόπου σχεδιασμού. Οι παράμετροι επηρεασμού της απόδοσης τους αναλύονται καθώς και οι επιπτώσεις των εξωτερικών συνθηκών. Μεγάλης σημασίας θεωρείται ο σχεδιασμός της ηλιακής συστοιχίας στο διάστημα και οι απαιτήσεις σχεδίασης για αξιόπιστη απόδοση και μεγάλη διάρκεια ζωής. Στη μελέτη αυτή αναλύουμε και τις δομές εκείνες που μπορούν να βελτιώσουν την απόδοση των διαστημικών ηλιακών κυττάρων. Οι πιο ελπιδοφόρες και πιο πολλά υποσχόμενες δομές είναι αυτές των μεταμορφικών «metamorphic» και ανεστραμμένων μεταμορφικών «inverted-metamorphic» ηλιακών κυττάρων σε σχέση με τα κλασικά "latticed matched" ηλιακά κύτταρα και αυτες οι δομές θα συνεχίσουν να βρίσκονται στο επίκεντρο για τις επόμενες δεκαετίες. Επιπλέον προϊόν της παρούσας διπλωματικής εργασίας, είναι η πειραματική μελέτη της συμπεριφοράς ενός φωτοβολταϊκού πλαισίου μονοκρυσταλλικού πυριτίου m-Si ισχύος αιχμής 80 W σε πραγματικές συνθήκες λειτουργίας στη γη, υπό την επίδραση διαφόρων εξωτερικών παραγόντων, όπως προσπίπτουσα ακτινοβολία, θερμοκρασία και γωνία κλίσης. Με στόχο την εκτίμηση της ενεργειακής απόδοσης και της ανίχνευσης της βέλτιστης τιμής αυτής πραγματοποιήθηκαν μετρήσεις με την βοήθεια του PVPM στη διάρκεια του έτους 2009 – 2010. Συγκεκριμένα περιλαμβάνονται δυο περίοδοι μετρήσεων: α) Απρίλιος 2009 έως Ιούλιος 2009, όπου πραγματοποιήθηκαν μετρήσεις ανά μια ώρα για όλες τις γωνίες κλίσης 0, 10, 20, 30, 40, 50, 60, 70, 80ο (μια ημέρα κάθε εβδομάδα) με την βοήθεια της ρυμθιζόνεμης βάσης και β) Αύγουστος 2009 έως Μάρτιος 2010, όπου πραγματοποιήθηκαν ολοήμερες μετρήσεις ανά 5 λεπτά, κάθε εβδομάδα με την βοήθεια φορητού υπολογιστή σε συγκεκριμένη κλίση 38ο, που αντιστοιχεί στο γεωγραφικό πλάτος της περιοχής της Πάτρας. Όλα αυτά οδηγούν σε μια ολοκληρωμένη εικόνα της ενεργειακής συμπεριφοράς και απόδοσης του φωτοβολταϊκού πλαισίου μας καθώς και των συνθηκών που οδηγούν σε βέλτιστες φωτοβολταϊκές ιδιότητες Η ετήσια αποδιδόμενη ενέργεια υπολογίστηκε ελαφρώς υψηλότερη από μετρήσεις γενικά αναφερόμενες από το ΚΑΠΕ. Αυτό θεωρούμε ότι οφείλεται στο γεγονός ότι η διάταξη μας δεν κατέγραφε μετρήσεις καθ όλη τη διάρκεια του έτους με αποτέλεσμα να μην είναι ακριβής η διάρκεια της ημέρας και η τιμή της προσπίπτουσας ηλιακής ακτινοβολίας. Μέσω του PVsyst προγράμματος προσπαθήσαμε να προσομοιώσουμε την ενεργειακή απόδοση του πλαισίου μονοκρυσταλλικού πυριτίου υπολογιστικά τόσο με τα πειραματικά μετεωρολογικά δεδομένα όσο και με τα μετεωρολογικά δεδομένα μέσω του προγράμματος Meteonorm και να την συγκρίνουμε με την πειραματική και επιπλέον να βρούμε την βέλτιστη απόδοση του ανάλογα με την κλίση και τον προσανατολισμό του. Η εξομοίωση με δεδομένα του προγράμματος Meteonorm 6.1 έδωσε τη διαφορά της αποδιδόμενης ενέργειας κάθε περίπτωσης, μεταξύ αυτής και της προηγούμενης μεθόδου. / The purpose of this thesis, is the theoretical study of solar modules used in space applications, together with the description of their technology and operation, and the historical development in recent decades from 1950 to today. In this context we analyzed the solar arrays for space applications, the requirements of materials for solar cells and the common types of semiconductor materials for modules, such as silicon Si and gallium arsenide GaAs. Initially, we studied what external factors affect the performance of solar cells in space and also the effects of space radiation and temperature. Further, we described the advanced silicon solar cells and the high-efficiency amorphous silicon solar cells, that improve the energy efficiency significant. For the optimal solution for space applications, we then analyzed thoroughly the most widely used in space multijunction MJ solar cells and their design, the performance parameters and the effects of external factors. To summarize the theoretical study, we studied the design of the solar array in space and the design requirements for reliable performance and longevity. Finally, there are many ways we can improve the performance of space solar cells. The most promising methods are those of metamorphic «metamorphic» and reverse metamorphic «inverted-metamorphic» solar cells compared to the classic "latticed matched" solar cells and will continue to be in the forefront for decades to come. Additional to the subject of this thesis, is the experimental study of the behavior of a photovoltaic monocrystalline silicon module m-Si 80 W peak power at real operation conditions under the influence of various external factors such as incident radiation, temperature and tilt. In order to estimate the energy efficiency we took measurements with the help of PVPM in the year 2009 - 2010. Specifically, it consists of two measurement periods: a) April 2009 to July 2009, when measurements were taken every hour for all angles 0, 10, 20, 30, 40, 50, 60, 70, 80 every week with the help of special structure and b) August 2009 to March 2010, when measurements were made all day, every five minutes, each week with a notebook in a particular inclination 38ο, corresponding to the latitude of the region of Patras. All these help us to gain a comprehensive idea of their behavior and performance of our photovoltaic modules. We also observed variation in the results in comparison with CRES databases due to the fact that we could not continuously conduct every day of the year. Using PVsyst we tried to verify our experimental results and find the best solutions for the tilt and orientation of the PV modules. With the program PVsyst we tried to simulate the performance of monocrystalline silicon solar cell using computational frameworks and to compare them with the experimental results. Finally it was also simulated with the data given from the database of the program Meteronorm 6.1 so as to compare both methods.
10

Composant diffractif numérique multispectral pour la concentration multifonctionnelle pour des dispositifs photovoltaïque de troisième génération / Multispectral digital diffractive element for smart sunlight concentration for third generation photovoltaïc devices

Albarazanchi, Abbas Kamal Hasan 21 September 2015 (has links)
La lumière du soleil est un bon candidat comme source propre et abondante d'énergie renouvelable. Cette source d'énergie écocompatible peut être exploitée pour répondre aux besoins croissants en énergie du monde. Plusieurs générations de cellules photovoltaïques ont été utilisées pour convertir directement la lumière solaire en énergie électrique. La troisième génération de type multijonction des cellules photovoltaïques est caractérisée par un niveau d'efficacité plus élevé que celui de tous les autres types de cellules photovoltaïques. Des dispositifs optiques, tels que des concentrateurs optiques, des séparateurs optiques et des dispositifs optiques réalisant simultanément la séparation du spectre et la concentration du faisceau ont été utilisés dans des systèmes de cellules solaires. Récemment, les Eléments Optiques Diffractifs (EOD) font l'objet d'un intérêt soutenu en vue de leur utilisation dans la conception de systèmes optiques appliqués aux cellules photovoltaïques. Cette thèse est consacrée à la conception d'un EOD qui peut réaliser simultanément la séparation du spectre et la concentration du faisceau pour des cellules photovoltaïques de type multijonction latéral ou similaire. Les EOD qui ont été conçus ont une structure sous-longueur d'onde et fonctionnent en espace lointain pour implanter la double fonction séparation du spectre et concentration du faisceau. Pour cette raison, des outils de simulation ont été développés pour simuler le comportement du champ magnétique à l'intérieur de l'EOD à structure sous-longueur d'onde. De plus, un propagateur hybride rigoureux a aussi été développé, il est basé sur les deux théories de la diffraction, à savoir la théorie scalaire et la théorie rigoureuse. La méthode FDTD (Finite Difference Time Domain) ou méthode de différences finies dans le domaine temporel a été utilisée pour modéliser la propagation du champ magnétique en champ proche c'est-à-dire à l'intérieur et autour de l'EOD. La méthode ASM (Angular Spectrum Method) ou méthode à spectre angulaire a été utilisée pour modéliser de façon rigoureuse la propagation libre en champ lointain. Deux EOD différents ont été développés permettant d'implanter les fonctions souhaitées (séparation du spectre et concentration du faisceau) ; il s'agit d'une part d'un composant diffractif intitulé G-Fresnel (Grating and Fresnel lens) qui combine un réseau avec une lentille de Fresnel et d'autre part d'une lentille hors-axe. Les composants proposés réalisent la séparation du spectre en deux bandes pour une plage visible-proche infrarouge du spectre solaire. Ces deux bandes peuvent être absorbées et converties en énergie électrique par deux cellules photovoltaïques différentes et disposées latéralement par rapport à l'axe du système. Ces dispositifs permettent d'obtenir un faible facteur de concentration et une efficacité de diffraction théorique d'environ 70 % pour les deux bandes séparées. Grâce à une distance de focalisation faible, ces composants peuvent être intégrés dans des systèmes compacts de cellules solaires. La validation expérimentale du prototype fabriqué montre une bonne correspondance entre les performances expérimentales et le modèle théorique / Sunlight represents a good candidate for an abundant and clean source of renewable energy. This environmentally friendly energy source can be exploited to provide an answer to the increasing requirement of energy from the world. Several generations of photovoltaic cells have been successively used to convert sunlight directly into electrical energy. Third generation multijunction PV cells are characterized by the highest level of efficiency between all types of PV cells. Optical devices have been used in solar cell systems such as optical concentrators, optical splitters, and hybrid optical devices that achieve Spectrum Splitting and Beam Concentration (SSBC) simultaneously. Recently, diffractive optical elements (DOE’s) have attracted more attention for their smart use it in the design of optical devices for PV cells applications.This thesis was allocated to design a DOE that can achieve the SSBC functions for the benefit of the lateral multijunction PV cells or similar. The desired design DOE's have a subwavelength structure and operate in the far field to implement the target functions (i.e. SSBC). Therefore, some modelling tools have been developed which can be used to simulate the electromagnetic field behavior inside a specific DOE structure, in the range of subwavelength features. Furthermore, a rigorous hybrid propagator is developed that is based on both major diffraction theories (i.e. rigorous and scalar diffraction theory). The FDTD method was used to model the propagation of the electromagnetic field in the near field, i.e. inside and around a DOE, and the ASM method was used to model rigorously propagation in the free space far field.The proposed device required to implement the intended functions is based on two different DOE’s components; a G-Fresnel (i.e. Grating and Fresnel lens), and an off-axis lens. The proposed devices achieve the spectrum splitting for a Vis-NIR range of the solar spectrum into two bands. These two bands can be absorbed and converted into electrical energy by two different PV cells, which are laterally arranged. These devices are able to implement a low concentration factor of “concentrator PV cell systems”. These devices also allow achieving theoretically around 70 % of optical diffraction efficiency for the both separated bands. The impact distance is very small for the devices proposed, which allows the possibility to integrate these devices into compact solar cell systems. The experimental validation of the fabricated prototype appears to provide a good matching of the experimental performance with the theoretical model.

Page generated in 0.0688 seconds