• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 11
  • 11
  • 11
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Detection and Tracking of Human Targets using Ultra-Wideband Radar

Östman, Andreas January 2016 (has links)
The purpose of this thesis was to assess the plausibility of using two Ultra- Wideband radars for detecting and tracking human targets. The detection has been performed by two different types of methods, constant false-alarm rate methods and a type of CLEAN algorithm. For tracking the targets, multiple hypothesis tracking has been studied. Particle filtering has been used for the state prediction, considering a significant amount of uncertainty in a motion model used in this thesis project. The detection and tracking methods have been implemented in MATLAB. Tracking in the cases of a single target and multiple targets has been investigated in simulation and experiment. The simulation results in these cases were compared with accurate ground truth data obtained using a VICON optical tracking system. The detection methods showed poor performance when using data that had been collected by the two radars and post-processed to enhance target features. For single targets, the detections were accurate enough to continuously track a target moving randomly in a controlled area. In the multiple target cases the tracker was not able to distinguish the multiple moving subjects.
2

Multiple Hypothesis Tracking For Multiple Visual Targets

Turker, Burcu 01 April 2010 (has links) (PDF)
Visual target tracking problem consists of two topics: Obtaining targets from camera measurements and target tracking. Even though it has been studied for more than 30 years, there are still some problems not completely solved. Especially in the case of multiple targets, association of measurements to targets, creation of new targets and deletion of old ones are among those. What is more, it is very important to deal with the occlusion and crossing targets problems suitably. We believe that a slightly modified version of multiple hypothesis tracking can successfully deal with most of the aforementioned problems with sufficient success. Distance, track size, track color, gate size and track history are used as parameters to evaluate the hypotheses generated for measurement to track association problem whereas size and color are used as parameters for occlusion problem. The overall tracker has been fine tuned over some scenarios and it has been observed that it performs well over the testing scenarios as well. Furthermore the performance of the tracker is analyzed according to those parameters in both association and occlusion handling situations.
3

Multiple hypothesis tracking for multiple visual targets

Turker, Burcu 01 April 2010 (has links) (PDF)
Visual target tracking problem consists of two topics: Obtaining targets from camera measurements and target tracking. Even though it has been studied for more than 30 years, there are still some problems not completely solved. Especially in the case of multiple targets, association of measurements to targets, creation of new targets and deletion of old ones are among those. What is more, it is very important to deal with the occlusion and crossing targets problems suitably. We believe that a slightly modified version of multiple hypothesis tracking can successfully deal with most of the aforementioned problems with sufficient success. Distance, track size, track color, gate size and track history are used as parameters to evaluate the hypotheses generated for measurement to track association problem whereas size and color are used as parameters for occlusion problem. The overall tracker has been fine tuned over some scenarios and it has been observed that it performs well over the testing scenarios as well. Furthermore the performance of the tracker is analyzed according to those parameters in both association and occlusion handling situations.
4

Avancées en suivi probabiliste de particules pour l'imagerie biologique

Chenouard, Nicolas 21 January 2010 (has links) (PDF)
Le suivi de particules est une méthode de choix pour comprendre les mécanismes intra-cellulaires car il fournit des moyens robustes et précis de caractériser la dynamiques des objets mobiles à l'échelle micro et nano métrique. Cette thèse traite de plusieurs aspects liés au problème du suivi de plusieurs centaines de particules dans des conditions bruitées. Nous présentons des techniques nouvelles basée sur des méthodes mathématiques robustes qui nous permettent des suivre des particules sous-résolutives dans les conditions variées qui sont rencontrées en imagerie cellulaire. Détection de particules : nous avons tout d'abord traité le problème de la détection de particules dans les images fluorescentes contenant un fond structuré. L'idée clé de la méthode est l'utilisation d'une technique de séparation de sources : l'algorithme d'Analyse en Composantes Morphologiques (ACM), pour séparer le fond des particules en exploitant leur différence de morphologie dans les images. Nous avons effectué un certain nombre de modifications à l'ACM pour l'adapter aux caractéristiques des images biologiques en fluorescence. Par exemple, nous avons proposé l'utilisation du dictionnaire de Curvelet et d'un dictionnaire de d'ondelettes, avec des à priori de parcimonie différents, afin de séparer le signal des particules du fond. Une fois la séparation de sources effectuée, l'image sans fond peut être analysée pour identifier de manière robuste la position des particules et pour les suivre au cours du temps. Modélisation du problème de suivi : nous avons proposé un cadre de travail statistique global qui tient compte des nombreux aspects du problème de suivi de particules dans des conditions bruitées. Le cadre de travail probabiliste que nous avons mis au point contient de nombreux modèles qui sont dédiés à l'imagerie biologique, tels que des modèles statistiques de mouvement des particules en milieu cellulaire. Nous avons aussi défini la concept de perceiability d'une cible dans le cas des particules biologiques. Grâce à ce modèle l'existence d'une particule est explicitement modélisée et quantifiée, ce qui nous permet de résoudre les problèmes de création et de terminaison des trajectoires au sein même de notre cadre probabiliste de suivi. Le cadre de travail proposé bénéficie d'une grande flexibilité mais reste facile à adapter car chaque paramètre du modèle trouve une interprétation simple et intuitive. Ainsi, notre modèle probabiliste de suivi nous a permis de modéliser de manière exhaustive un grand nombre de systèmes biologiques différents. Mise au point d'un algorithme de suivi : nous avons reformulé l'algorithme de suivi nommé Multiple Hypothesis Tracking (MHT) pour qu'il inclue notre modèle probabiliste de suivi dédié aux particules biologiques, et nous avons proposé une implémentation rapide qui permet de suivre de nombreuses particules dans des conditions d'imagerie dégradées. L'\textit{Enhanced} MHT (E-MHT) que nous avons proposé tire pleinement partie du modèle de suivi en incorporant la connaissance des images futures, ce qui augmente significativement le pouvoir discriminant des critères statistiques. En conséquence, l'E-MHT est capable d'identifier automatiquement les détections erronée et de détecter les événements d'apparition et de disparition des particules. Nous avons résolu le problème de la complexité de la tache de suivi grâce à un design de l'algorithme que exploite la topologie en arbre des solution et à la possibilité d'effectuer les calculs de manière parallèle. Une série de tests comparatifs entre l'E-MHT et des méthodes existantes de suivi a été réalisée avec des séquences d'images synthétiques 2D et avec des jeux de données réels 2D et 3D. Dans chaque cas l'E-MHT a montré des performances supérieures par rapport aux méthodes standards, avec une capacité remarquable à supporter des conditions d'imagerie très dégradées. Nous avons appliqué les méthodes de suivi proposées dans le cadre de plusieurs projets biologiques, ce qui a conduit à des résultats biologiques originaux. La flexibilité et la robustesse de notre méthode nous a notamment permis de suivre des prions infectant des cellules, de caractériser le transport de protéines lors du développement de l'ovocyte de la drosophile, ainsi que d'étudier la trafic d'ARN messager dans l'ovocyte de drosophile.
5

Navigation And Control Studies On Cruise Missiles

Ekutekin, Vedat 01 January 2007 (has links) (PDF)
A cruise missile is a guided missile that uses a lifting wing and a jet propulsion system to allow sustained flight. Cruise missiles are, in essence, unmanned aircraft and they are generally designed to carry a large conventional or nuclear warhead many hundreds of miles with excellent accuracy. In this study, navigation and control studies on cruise missiles are performed. Due to the variety and complexity of the subsystems of the cruise missiles, the main concern is limited with the navigation system. Navigation system determines the position, velocity, attitude and time solutions of the missile. Therefore, it can be concluded that an accurate self-contained navigation system directly influences the success of the missile. In the study, modern radar data association algorithms are implemented as new Terrain Aided Navigation (TAN) algorithms which can be used with low-cost Inertial Measurement Units (IMU&rsquo / s). In order to perform the study, first a thorough survey of the literature on mid-course navigation of cruise missiles is performed. Then, study on modern radar data association algorithms and their implementations to TAN are done with simple simulations. At the case study part, a six degree of freedom (6 DOF) flight simulation tool is developed which includes the aerodynamic and dynamic model of the cruise missile model including error model of the navigation system. Finally, the performances of the designed navigation systems with the implemented TAN algorithms are examined in detail with the help of the simulations performed.
6

Development Of An Electronic Attack (ea) System In Multi&amp / #8208 / target Tracking

Turkcu, Ozlem 01 December 2007 (has links) (PDF)
In this study, an expert system based EA and tracking system is developed and the performances of these systems are optimized. Tracking system consists of a monopulse tracking radar and a Multiple Hypothesis Tracking (MHT) algorithm. MHT is modelled as a measurement&amp / #8208 / oriented approach, which is capable of initiating tracks. As each measurement is received, probabilities are calculated for the hypotheses and target states are estimated using a Kalman filter. Range Gate Pull-Off (RGPO) is selected as an EA technique to be developed because it is accepted to be the primary deception technique employed against tracking radar. Two modes of RGPO technique / linear and parabolic, according to time delay controller are modelled. Genetic Algorithm (GA) Toolbox of MATLAB is used for the optimization of these systems over some predetermined scenarios. It is observed that the performance of the tracking radar system is improved significantly and successful tracking is achieved over all given scenarios, even for closely spaced targets. RGPO models are developed against this improved tracking performance and deception of tracking radar is succeeded for all given target models.
7

Visual Detection And Tracking Of Moving Objects

Ergezer, Hamza 01 November 2007 (has links) (PDF)
In this study, primary steps of a visual surveillance system are presented: moving object detection and tracking of these moving objects. Background subtraction has been performed to detect the moving objects in the video, which has been taken from a static camera. Four methods, frame differencing, running (moving) average, eigenbackground subtraction and mixture of Gaussians, have been used in the background subtraction process. After background subtraction, using some additional operations, such as morphological operations and connected component analysis, the objects to be tracked have been acquired. While tracking the moving objects, active contour models (snakes) has been used as one of the approaches. In addition to this method / Kalman tracker and mean-shift tracker are other approaches which have been utilized. A new approach has been proposed for the problem of tracking multiple targets. We have implemented this method for single and multiple camera configurations. Multiple cameras have been used to augment the measurements. Homography matrix has been calculated to find the correspondence between cameras. Then, measurements and tracks have been associated by the new tracking method.
8

Contextual information aided target tracking and path planning for autonomous ground vehicles

Ding, Runxiao January 2016 (has links)
Recently, autonomous vehicles have received worldwide attentions from academic research, automotive industry and the general public. In order to achieve a higher level of automation, one of the most fundamental requirements of autonomous vehicles is the capability to respond to internal and external changes in a safe, timely and appropriate manner. Situational awareness and decision making are two crucial enabling technologies for safe operation of autonomous vehicles. This thesis presents a solution for improving the automation level of autonomous vehicles in both situational awareness and decision making aspects by utilising additional domain knowledge such as constraints and influence on a moving object caused by environment and interaction between different moving objects. This includes two specific sub-systems, model based target tracking in environmental perception module and motion planning in path planning module. In the first part, a rigorous Bayesian framework is developed for pooling road constraint information and sensor measurement data of a ground vehicle to provide better situational awareness. Consequently, a new multiple targets tracking (MTT) strategy is proposed for solving target tracking problems with nonlinear dynamic systems and additional state constraints. Besides road constraint information, a vehicle movement is generally affected by its surrounding environment known as interaction information. A novel dynamic modelling approach is then proposed by considering the interaction information as virtual force which is constructed by involving the target state, desired dynamics and interaction information. The proposed modelling approach is then accommodated in the proposed MTT strategy for incorporating different types of domain knowledge in a comprehensive manner. In the second part, a new path planning strategy for autonomous vehicles operating in partially known dynamic environment is suggested. The proposed MTT technique is utilized to provide accurate on-board tracking information with associated level of uncertainty. Based on the tracking information, a path planning strategy is developed to generate collision free paths by not only predicting the future states of the moving objects but also taking into account the propagation of the associated estimation uncertainty within a given horizon. To cope with a dynamic and uncertain road environment, the strategy is implemented in a receding horizon fashion.
9

Efficient multiple hypothesis tracking using a purely functional array language

Nolkrantz, Marcus January 2022 (has links)
An autonomous vehicle is a complex system that requires a good perception of the surrounding environment to operate safely. One part of that is multiple object tracking, which is an essential component in camera-based perception whose responsibility is to estimate object motion from a sequence of images. This requires an association problem to be solved where newly estimated object positions are mapped to previously predicted trajectories, for which different solution strategies exist.  In this work, a multiple hypothesis tracking algorithm is implemented. The purpose is to demonstrate that measurement associations are improved compared to less compute-intensive alternatives. It was shown that the implemented algorithm performed 13 percent better than an intersection over union tracker when evaluated using a standard evaluation metric. Furthermore, this work also investigates the usage of abstraction layers to accelerate time-critical parallel operations on the GPU. It was found that the execution time of the tracking algorithm could be reduced by 42 percent by replacing four functions with implementations written in the purely functional array language Futhark. Finally, it was shown that a GPU code abstraction layer can reduce the knowledge barrier required to write efficient CUDA kernels.
10

ILoViT: Indoor Localization via Vibration Tracking

Poston, Jeffrey Duane 23 April 2018 (has links)
Indoor localization remains an open problem in geolocation research, and once this is solved the localization enables counting and tracking of building occupants. This information is vital in an emergency, enables occupancy-optimized heating or cooling, and assists smart buildings in tailoring services for occupants. Unfortunately, two prevalent technologies---GPS and cellular-based positioning---perform poorly indoors due to attenuation and multipath from the building. To address this issue, the research community devised many alternatives for indoor localization (e.g., beacons, RFID tags, Wi-Fi fingerprinting, and UWB to cite just a few examples). A drawback with most is the requirement for those being located to carry a properly-configured device at all times. An alternative based on computer vision techniques poses significant privacy concerns due to cameras recording building occupants. By contrast, ILoViT research makes novel use of accelerometers already present in some buildings. These sensors were originally intended to monitor structural health or to study structural dynamics. The key idea is that when a person's footstep-generated floor vibrations can be detected and located then it becomes possible to locate persons moving within a building. Vibration propagation in buildings has complexities not encountered by acoustic or radio wave propagation in air; thus, conventional localization algorithms are inadequate. ILoVIT algorithms account for these conditions and have been demonstrated in a public building to provide sub-meter accuracy. Localization provides the foundation for counting and tracking, but providing these additional capabilities confronts new challenges. In particular, how does one determine the correct association of footsteps to the person making them? The ILoViT research created two methods for solving the data association problem. One method only provides occupancy counting but has modest, polynomial time complexity. The other method draws inspiration from prior work in the radar community on the multi-target tracking problem, specifically drawing from the multiple hypothesis tracking strategy. This dissertation research makes new enhancements to this tracking strategy to account for human gait and characteristics of footstep-derived multilateration. The Virginia Polytechnic Institute and State University's College of Engineering recognized this dissertation research with the Paul E. Torgersen Graduate Student Research Excellence Award. / Ph. D. / Indoor localization remains an open problem in geolocation research, and once this is solved the localization enables counting and tracking of building occupants. This information is vital in an emergency, enables occupancy-optimized heating or cooling and assists smart buildings in tailoring services for occupants. Unfortunately, two prevalent technologies—GPS and cellular-based positioning—are ill-suited here due to the way a building’s weakens and distorts wireless signals. To address this issue the research community devised many alternatives for indoor localization. A drawback with most is the requirement for those being located to carry a properly-configured device at all times. An alternative based on computer vision techniques poses significant privacy concerns due to cameras recording building occupants. By contrast, ILoViT research makes novel use of a mature sensor technology already present in some buildings. These sensors were originally intended to monitor structural health or to study structural dynamics. The key idea behind this unconventional role for building sensors is that when a person’s footstep-generated floor vibrations can be detected and located then it is possible to locate persons moving within a building. Vibration propagation in buildings has complexities not encountered by acoustic or radio wave propagation in air; thus, conventional localization algorithms designed for those applications are inadequate. ILoVIT algorithms account for these conditions and have been demonstrated in a public building to provide sub-meter accuracy. Localization provides the foundation for counting and tracking, but providing these additional capabilities confronts new challenges. In particular, how does one determine the correct association of footsteps to the person making them? The ILoViT research created two methods for solving the data association problem. One method only provides area occupancy counting but has modest complexity. The other method draws inspiration from prior work in the radar community on the multi-target tracking problem, and the dissertation research makes new enhancements to account for human gait and footstep-based localization. The Virginia Polytechnic Institute and State University’s College of Engineering recognized this dissertation research with the Paul E. Torgersen Graduate Student Research Excellence Award.

Page generated in 0.1065 seconds