Spelling suggestions: "subject:"multiprocessor.""
231 |
Athapascan-0 : exploitation de la multiprogrammation légère sur grappes de multiprocesseursCarissimi, Alexandre da Silva January 1999 (has links)
L'accroissement d'efficacite des réseaux d'interconnexion et la vulgarisation des machines multiprocesseurs permettent la réalisation de machines parallèles a mémoire distribuée de faible coût: les grappes de multiprocesseurs. Elles nécessitent l'exploitation à la fois du parallélismeà grain fin, interne à un multiprocesseur offert par la multiprogrammation légère, et du parallélisme à gros grain entre les différents multiprocesseurs. L'exploitation simultanée de ces deux types de parallélisme exige une méthode de communication entre les processus légers qui ne partagent pas le mêmme espace d'adressage. Le travail de cette thèse porte sur le problème de l'Intégration de la multiprogrammation légère et des communications sur grappes de multiprocesseurs symétriques (SMP). II porte plus précisément sur evaluation et le reglage du noyau exécutif ATHAPASCAN-0 sur ce type d'architecture. ATHAPASCAN-0 est un noyau exécutif, portable, développé au sein du projet APACHE (CNRS-INPG-INRIA-UJF), qui combine la multiprogrammation légère et la communication par échange de messages. La portabilité est assurée par une organisation en couches basée sur les standards POSIX threads et MPI largement répandus. ATHAPASCAN-0 étend le modèle de réseau statique de processus «lourds» communicants tel que MPI, PVM, etc,à celui d'un réseau dynamique de processus légers communicants. La technique de base est la multiprogrammation lègere des communications et des calculs. La progression des communications exige la scrutation de état du reseau et l'enchainement des opérations de transferts. L'efficacité repose sur la minimisation de ces opérations. De plus, l'emploi de multiprocesseurs ajoute des problèmes spécifiques dus à l'apparition d'un parallélisme réel entre calcul et communication. Ces problèmes sont présentés et des solutions sont proposées pour l'environnement ATHAPASCAN-0. Ces solutions sont évaluées sur des grappes de multiprocesseurs. / The continuous price reduction for commodity PC multiprocessors and the availability of fast network interfaces have made cluster of multiprocessors an attractive low-price alternative to build parallel systems. Multiprocessor clusters offer two levels of parallelism: a fine grain parallelism inside a single multiprocessor and a coarse grain among them. A mechanism must be provided to exploit both levels of parallelism simultaneously. This requires to provide communications between threads belonging to different addresses spaces. This dissertation addresses the problem of integrating threads and communications on ATHAPASCAN-0 run time system. ATHAPASCAN-0 is a portable run time for cluster of multiprocessors developed as part of the APACHE project (CNRS-INPG-INRIA-UJF). Portability is achieved by a layered organization based on standards like POSIX threads and MPI. The ATHAPASCAN-0 run time system extends the heavy-weight process communication model of message passing libraries such as MPI, PVM, etc, into a lighter dynamic network of communicating threads. Multiprogramming is the key concept used. Communication progress is based on a network polling basis to handle incoming messages and to deliver outgoing communications requests. Performance is strongly dependent on the way these operations are implemented. Additionally, multiprocessors introduce some programming problems like overhead of cache coherency mechanisms, method of managing concurrent accesses and efficient mutex locking to avoid unnecessary context switching. These problems are analyzed and solutions are implemented in the ATHAPASCAN-0 run time system. An evaluation of these solutions is performed on a cluster of multiprocessors.
|
232 |
Efficient optimal multiprocessor scheduling algorithms for real-time systemsNelissen, Geoffrey 08 January 2013 (has links)
Real-time systems are composed of a set of tasks that must respect some deadlines. We find them in applications as diversified as the telecommunications, medical devices, cars, planes, satellites, military applications, etc. Missing deadlines in a real-time system may cause various results such as a diminution of the quality of service provided by the system, the complete stop of the application or even the death of people. Being able to prove the correct operation of such systems is therefore primordial. This is the goal of the real-time scheduling theory.<p><p>These last years, we have witnessed a paradigm shift in the computing platform architectures. Uniprocessor platforms have given place to multiprocessor architectures. While the real-time scheduling theory can be considered as being mature for uniprocessor systems, it is still an evolving research field for multiprocessor architectures. One of the main difficulties with multiprocessor platforms, is to provide an optimal scheduling algorithm (i.e. scheduling algorithm that constructs a schedule respecting all the task deadlines for any task set for which a solution exists). Although optimal multiprocessor real-time scheduling algorithms exist, they usually cause an excessive number of task preemptions and migrations during the schedule. These preemptions and migrations cause overheads that must be added to the task execution times. Therefore, task sets that would have been schedulable if preemptions and migrations had no cost, become unschedulable in practice. An efficient scheduling algorithm is therefore an algorithm that either minimize the number of preemptions and migrations, or reduce their cost.<p><p>In this dissertation, we expose the following results:<p>- We show that reducing the "fairness" in the schedule, advantageously impacts the number of preemptions and migrations. Hence, all the scheduling algorithms that will be proposed in this thesis, tend to reduce or even suppress the fairness in the computed schedule.<p><p>- We propose three new online scheduling algorithms. One of them --- namely, BF2 --- is optimal for the scheduling of sporadic tasks in discrete-time environments, and reduces the number of task preemptions and migrations in comparison with the state-of-the-art in discrete-time systems. The second one is optimal for the scheduling of periodic tasks in a continuous-time environment. Because this second algorithm is based on a semi-partitioned scheme, it should favorably impact the preemption overheads. The third algorithm --- named U-EDF --- is optimal for the scheduling of sporadic and dynamic task sets in a continuous-time environment. It is the first real-time scheduling algorithm which is not based on the notion of "fairness" and nevertheless remains optimal for the scheduling of sporadic (and dynamic) systems. This important result was achieved by extending the uniprocessor algorithm EDF to the multiprocessor scheduling problem. <p><p>- Because the coding techniques are also evolving as the degree of parallelism increases in computing platforms, we provide solutions enabling the scheduling of parallel tasks with the currently existing scheduling algorithms, which were initially designed for the scheduling of sequential independent tasks. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
|
233 |
Evaluation Of Register Allocation And Instruction Scheduling Methods In Multiple Issue ProcessorsValluri, Madhavi Gopal 01 1900 (has links) (PDF)
No description available.
|
234 |
The Multiprocessor Scheduling Of Periodic And Sporadic Hard Realtime SystemsReddy, Vikrama 02 1900 (has links) (PDF)
Real time systems have been a major area of study for many years. Advancements in electronics, computers, information technology and digital networks are fueling major changes in the area of real time systems. In this thesis, we look at some of the most commonly modeled real time task systems, such as the periodic task model, including more complex task models such as the sporadic task systems. Primary focus of researchers in these fields include how to guarantee hard real time requirement of any task specification, with the minimal utilization of available hardware resources. Advancement in technology has brought multi-cored architectures with shared memory and massively parallel computing devices within the reach of ordinary computer users. Hence, it makes sense to study existing and newer task models on a wide variety of hardware platforms.
Periodic task model and systems with such task models have been designed and well understood. Newer models such as the sporadic task models have been proposed to capture a more larger variety of real time systems being designed and used. We focus on designing more efficient scheduling algorithms for the sporadic LL task model, and propose simpler proofs to some of the algorithms existing in current literature. This thesis also focuses on scheduling sporadic task systems, under both multiprocessor full-migration and multiprocessor partitioned scheme. We also provide approximation algorithms to efficiently determine feasibility of such task systems.
|
235 |
Power Efficient Last Level Cache For Chip MultiprocessorsMandke, Aparna 01 1900 (has links) (PDF)
The number of processor cores and on-chip cache size has been increasing on chip multiprocessors (CMPs). As a result, leakage power dissipated in the on-chip cache has become very significant. We explore various techniques to switch-off the over-allocated cache so as to reduce leakage power consumed by it. A large cache offers non-uniform access latency to different cores present on a CMP and such a cache is called “Non-Uniform Cache Architecture (NUCA)”. Past studies have explored techniques to reduce leakage power for uniform access latency caches and with a single application executing on a uniprocessor. Our ideas of power optimized caches are applicable to any memory technology and architecture for which the difference of leakage power in the on-state and off-state of on-chip cache bank is significant.
Switching off the last level shared cache on a CMP is a challenging problem due to concurrently executing threads/processes and large dispersed NUCA cache. Hence, to determine cache requirement on a CMP, first we propose a new highly accurate method to estimate working set size of an application, which we call “tagged working set size estimation (TWSS)” method. This method has a negligible hardware storage overhead of 0.1% of the cache size. The use of TWSS is demonstrated by adaptively adjusting cache associativity. Our ideas of adaptable associative cache is scalable with respect to the number of cores present on a CMP. It uses information available locally in a tile on a tiled CMP and thus avoids network access unlike other commonly used heuristics such as average memory access latency and cache miss ratio. Our implementation gives 25% and 19% higher EDP savings than that obtained with average memory access latency and cache miss ratio heuristics on a static NUCA platform (SNUCA), respectively.
Cache misses increase with reduced cache associativity. Hence, we also propose to map some of the L2 slices onto the rest L2 slices and switch-off mapped L2 slices. The L2 slice includes all L2 banks in a tile. We call this technique the “remap policy”. Some applications execute with lesser number of threads than available cores during their execution. In such applications L2 slices which are farther to those threads are switched-off and mapped on-to L2 slices which are located nearer to those threads. By using nearer L2 slices with the help of remapped technology, some applications show improved execution time apart from reduction in leakage power consumption in NUCA caches.
To estimate the maximum possible gains that can be obtained using the remap policy, we statically determine the near-optimal remap configuration using the genetic algorithms. We formulate this problem as a energy-delay product minimization problem. Our dynamic remap policy implementation gives energy-delay savings within an average of 5% than that obtained with the near-optimal remap configuration.
Energy-delay product can also be minimized by improving execution time, which depends mainly on the static and dynamic NUCA access policies (DNUCA). The suitability of cache access policy depends on data sharing properties of a multi-threaded application. Hence, we propose three indices to quantify data sharing properties of an application and use them to predict a more suitable cache access policy among SNUCA and DNUCA for an application.
|
236 |
Tiling Stencil Computations To Maximize ParallelismBandishti, Vinayaka Prakasha 12 1900 (has links) (PDF)
Stencil computations are iterative kernels often used to simulate the change in a discretized spatial domain overtime (e.g., computational fluid dynamics) or to solve for unknowns in a discretized space by converging to a steady state (i.e., partial differential equations).They are commonly found in many scientific and engineering applications. Most stencil computations allow tile-wise concurrent start ,i.e., there exists a face of the iteration space and a set of tiling hyper planes such that all tiles along that face can be started concurrently. This provides load balance and maximizes parallelism.
Loop tiling is a key transformation used to exploit both data locality and parallelism from stencils simultaneously. Numerous works exist that target improving locality, controlling frequency of synchronization, and volume of communication wherever applicable. But, concurrent start-up of tiles that evidently translates into perfect load balance and often reduction in frequency of synchronization is completely ignored. Existing automatic tiling frameworks often choose hyperplanes that lead to pipelined start-up and load imbalance. We address this issue with a new tiling technique that ensures concurrent start-up as well as perfect load balance whenever possible. We first provide necessary and sufficient conditions on tiling hyperplanes to enable concurrent start for programs with affine data accesses. We then discuss an iterative approach to find such hyperplanes.
It is not possible to directly apply automatic tiling techniques to periodic stencils because of the wrap-around dependences in them. To overcome this, we use iteration space folding techniques as a pre-processing stage after which our technique can be applied without any further change.
We have implemented our techniques on top of Pluto-a source-level automatic parallelizer. Experimental evaluation on a 12-core Intel Westmere shows that our code is able to outperform a tuned domain-specific stencil code generator by 4% to2 x, and previous compiler techniques by a factor of 1.5x to 15x. For the swim benchmark from SPECFP2000, we achieve an .improvement of 5.12 x on a 12-core Intel Westmere and 2.5x on a 16-core AMD Magny-Cours machines, over the auto-parallelizer of Intel C Compiler.
|
237 |
Simulator for optimizing performance and power of embedded multicore processorsGoska, Benjamin J. 26 April 2012 (has links)
This work presents improvements to a multi-core performance/power simulator. The improvements which include updated power models, voltage scaling aware models, and an application specific benchmark, are done to increase the accuracy of power models under voltage and frequency scaling. Improvements to the simulator enable more accurate design space exploration for a biomedical application. The work flow used to modify the simulator is also presented so similar modifications could be used on future simulators. / Graduation date: 2012
|
238 |
NoC Design & Optimization of Multicore Media ProcessorsBasavaraj, T January 2013 (has links) (PDF)
Network on Chips[1][2][3][4] are critical elements of modern System on Chip(SoC) as well as Chip Multiprocessor(CMP)designs. Network on Chips (NoCs) help manage high complexity of designing large chips by decoupling computation from communication. SoCs and CMPs have a multiplicity of communicating entities like programmable processing elements, hardware acceleration engines, memory blocks as well as off-chip interfaces. With power having become a serious design constraint[5], there is a great need for designing NoC which meets the target communication requirements, while minimizing power using all the tricks available at the architecture, microarchitecture and circuit levels of the de-sign. This thesis presents a holistic, QoS based, power optimal design solution of a NoC inside a CMP taking into account link microarchitecture and processor tile configurations.
Guaranteeing QoS by NoCs involves guaranteeing bandwidth and throughput for connections and deterministic latencies in communication paths. Label Switching based Network-on-Chip(LS-NoC) uses a centralized LS-NoC Management framework that engineers traffic into QoS guaranteed routes. LS-NoC uses label switching, enables band-width reservation, allows physical link sharing and leverages advantages of both packet and circuit switching techniques. A flow identification algorithm takes into account band-width available in individual links to establish QoS guaranteed routes. LS-NoC caters to the requirements of streaming applications where communication channels are fixed over the lifetime of the application. The proposed NoC framework inherently supports heterogeneous and ad-hoc SoC designs.
A multicast, broadcast capable label switched router for the LS-NoC has been de-signed, verified, synthesized, placed and routed and timing analyzed. A 5 port, 256 bit data bus, 4 bit label router occupies 0.431 mm2 in 130nm and delivers peak band-width of80Gbits/s per link at312.5MHz. LS Router is estimated to consume 43.08 mW. Bandwidth and latency guarantees of LS-NoC have been demonstrated on streaming applications like Hiper LAN/2 and Object Recognition Processor, Constant Bit Rate traffic patterns and video decoder traffic representing Variable Bit Rate traffic. LS-NoC was found to have a competitive figure of merit with state-of-the-art NoCs providing QoS. We envision the use of LS-NoC in general purpose CMPs where applications demand deterministic latencies and hard bandwidth requirements.
Design variables for interconnect exploration include wire width, wire spacing, repeater size and spacing, degree of pipelining, supply, threshold voltage, activity and coupling factors. An optimal link configuration in terms of number of pipeline stages for a given length of link and desired operating frequency is arrived at. Optimal configurations of all links in the NoC are identified and a power-performance optimal NoC is presented. We presents a latency, power and performance trade-off study of NoCs using link microarchitecture exploration. The design and implementation of a framework for such a design space exploration study is also presented. We present the trade-off study on NoCs by varying microarchitectural(e.g. pipelining) and circuit level(e.g. frequency and voltage) parameters.
A System-C based NoC exploration framework is used to explore impacts of various architectural and microarchitectural level parameters of NoC elements on power and performance of the NoC. The framework enables the designer to choose from a variety of architectural options like topology, routing policy, etc., as well as allows experimentation with various microarchitectural options for the individual links like length, wire width, pitch, pipelining, supply voltage and frequency. The framework also supports a flexible traffic generation and communication model. Latency, power and throughput results using this framework to study a 4x4 CMP are presented. The framework is used to study NoC designs of a CMP using different classes of parallel computing benchmarks[6].
One of the key findings is that the average latency of a link can be reduced by increasing pipeline depth to a certain extent, as it enables link operation at higher link frequencies.
Abstract
There exists an optimum degree of pipelining which minimizes the energy-delay product of the link. In a 2D Torus when the longest link is pipelined by 4 stages at which point least latency(1.56 times minimum) is achieved and power(40% of max) and throughput (64%of max) are nominal. Using frequency scaling experiments, power variations of up to40%,26.6% and24% can be seen in 2D Torus, Reduced 2D Torus and Tree based NoC between various pipeline configurations to achieve same frequency at constant voltages. Also in some cases, we find that switching to a higher pipelining configuration can actually help reduce power as the links can be designed with smaller repeaters. We also find that the overall performance of the ICNs is determined by the lengths of the links needed to support the communication patterns. Thus the mesh seems to perform the best amongst the three topologies(Mesh, Torus and Folded Torus) considered in case studies.
The effects of communication overheads on performance, power and energy of a multiprocessor chip using L1,L2 cache sizes as primary exploration parameters using accurate interconnect, processor, on-chip and off-chip memory modelling are presented. On-chip and off-chip communication times have significant impact on execution time and the energy efficiency of CMPs. Large cache simply larger tile area that result in longer inter-tile communication link lengths and latencies, thus adversely impacting communication time. Smaller caches potentially have higher number of misses and frequent of off-tile communication. Energy efficient tile design is a configuration exploration and trade-off study using different cache sizes and tile areas to identify a power-performance optimal configuration for the CMP.
Trade-offs are explored using a detailed, cycle accurate, multicore simulation frame-work which includes superscalar processor cores, cache coherent memory hierarchies, on-chip point-to-point communication networks and detailed interconnect model including pipelining and latency. Sapphire, a detailed multiprocessor execution environment integrating SESC, Ruby and DRAM Sim was used to run applications from the Splash2 benchmark(64KpointFFT).Link latencies are estimated for a16 core CMP simulation on Sapphire. Each tile has a single processor, L1 and L2 caches and a router. Different sizesofL1 andL2lead to different tile clock speeds, tile miss rates and tile area and hence interconnect latency.
Simulations across various L1, L2 sizes indicate that the tile configuration that maximizes energy efficiency is related to minimizing communication time. Experiments also indicate different optimal tile configurations for performance, energy and energy efficiency. Clustered interconnection network, communication aware cache bank mapping and thread mapping to physical cores are also explored as potential energy saving solutions. Results indicate that ignoring link latencies can lead to large errors in estimates of program completion times, of up to 17%. Performance optimal configurations are achieved at lower L1 caches and at moderateL2 cache sizes due to higher operating frequencies and smaller link lengths and comparatively lesser communication. Using minimal L1 cache size to operate at the highest frequency may not always be the performance-power optimal choice. Larger L1 sizes, despite a drop in frequency, offer a energy advantage due to lesser communication due to misses.
Clustered tile placement experiments for FFT show considerable performance per watt improvement (1.2%). Remapping most accessed L2 banks by a process in the same core or neighbouring cores after communication traffic analysis offers power and performance advantages. Remapped processes and banks in clustered tile placement show a performance per watt improvement of5.25% and energy reductionof2.53%. This suggests that processors could execute a program in multiple modes, for example, minimum energy, maximum performance.
|
239 |
Interference Analysis and Resource Management in Server Processors: from HPC to Cloud ComputingPons Escat, Lucía 01 September 2023 (has links)
[ES] Una de las principales preocupaciones de los centros de datos actuales es maximizar la utilización de los servidores. En cada servidor se ejecutan simultáneamente varias aplicaciones para aumentar la eficiencia de los recursos. Sin embargo, las prestaciones dependen en gran medida de la proporción de recursos que recibe cada aplicación. El mayor número de núcleos (y de aplicaciones ejecutándose) con cada nueva generación de procesadores hace que crezca la preocupación por la interferencia en los recursos compartidos. Esta tesis se centra en mitigar la interferencia cuando diferentes aplicaciones se consolidan en un mismo procesador desde dos perspectivas: computación de alto rendimiento (HPC) y computación en la nube.
En el contexto de HPC, esta tesis propone políticas de gestión para dos de los recursos más críticos: la caché de último nivel (LLC) y los núcleos del procesador. La LLC desempeña un papel clave en las prestaciones de los procesadores actuales al reducir considerablemente el número de accesos de alta latencia a memoria principal. Se proponen estrategias de particionado de la LLC tanto para cachés inclusivas como no inclusivas, ambos diseños presentes en los procesadores para servidores actuales. Para los esquemas, se detectan nuevos comportamientos problemáticos y se asigna un mayor espacio de caché a las aplicaciones que hacen mejor uso de este. En cuanto a los núcleos del procesador, muchas aplicaciones paralelas (como aplicaciones de grafos) no escalan bien con un mayor número de núcleos. Además, el planificador de Linux aplica una estrategia de tiempo compartido que no ofrece buenas prestaciones cuando se ejecutan aplicaciones de grafo. Para maximizar la utilización del sistema, esta tesis propone ejecutar múltiples aplicaciones de grafo en el mismo procesador, asignando a cada una el número óptimo de núcleos (y adaptando el número de hilos creados) dinámicamente.
En cuanto a la computación en la nube, esta tesis aborda tres grandes retos: la compleja infraestructura de estos sistemas, las características de sus aplicaciones y el impacto de la interferencia entre máquinas virtuales (MV). Primero, esta tesis presenta la plataforma experimental desarrollada con los principales componentes de un sistema en la nube. Luego, se presenta un amplio estudio de caracterización sobre un conjunto de aplicaciones de latencia crítica representativas con el fin de identificar los puntos que los proveedores de servicios en la nube deben tener en cuenta para mejorar el rendimiento y la utilización de los recursos. Por último, se realiza una propuesta que permite detectar y estimar dinámicamente la interferencia entre MV. El enfoque usa métricas que pueden monitorizarse fácilmente en la nube pública, ya que las MV deben tratarse como "cajas negras". Toda la investigación descrita se lleva a cabo respetando las restricciones y cumpliendo los requisitos para ser aplicable en entornos de producción de nube pública.
En resumen, esta tesis aborda la contención en los principales recursos compartidos del sistema en el contexto de la consolidación de servidores. Los resultados experimentales muestran importantes ganancias sobre Linux. En los procesadores con LLC inclusiva, el tiempo de ejecución (TT) se reduce en más de un 40%, mientras que se mejora el IPC más de un 3%. Con una LLC no inclusiva, la equidad y el TT mejoran en un 44% y un 24%, respectivamente, al mismo tiempo que se mejora el rendimiento hasta un 3,5%. Al distribuir los núcleos del procesador de forma eficiente, se alcanza una equidad casi perfecta (94%), y el TT se reduce hasta un 80%. En entornos de computación en la nube, la degradación del rendimiento puede estimarse con un error de un 5% en la predicción global. Todas las propuestas presentadas han sido diseñadas para ser aplicadas en procesadores comerciales sin requerir ninguna información previa, tomando las decisiones dinámicamente con datos recogidos de los contadores de prestaciones. / [CAT] Una de les principals preocupacions dels centres de dades actuals és maximitzar la utilització dels servidors. A cada servidor s'executen simultàniament diverses aplicacions per augmentar l'eficiència dels recursos. Tot i això, el rendiment depèn en gran mesura de la proporció de recursos que rep cada aplicació. El nombre creixent de nuclis (i aplicacions executant-se) amb cada nova generació de processadors fa que creixca la preocupació per l'efecte causat per les interferències en els recursos compartits. Aquesta tesi se centra a mitigar la interferència en els recursos compartits quan diferents aplicacions es consoliden en un mateix processador des de dues perspectives: computació d'alt rendiment (HPC) i computació al núvol.
En el context d'HPC, aquesta tesi proposa polítiques de gestió per a dos dels recursos més crítics: la memòria cau d'últim nivell (LLC) i els nuclis del processador. La LLC exerceix un paper clau a les prestacions del sistema en els processadors actuals reduint considerablement el nombre d'accessos d'alta latència a la memòria principal. Es proposen estratègies de particionament de la LLC tant per a caus inclusives com no inclusives, ambdós dissenys presents en els processadors actuals. Per als dos esquemes, se detecten nous comportaments problemàtics i s'assigna un major espai de memòria cau a les aplicacions que en fan un millor ús. Pel que fa als nuclis del processador, moltes aplicacions paral·leles (com les aplicacions de graf) no escalen bé a mesura que s'incrementa el nombre de nuclis. A més, el planificador de Linux aplica una estratègia de temps compartit que no ofereix bones prestacions quan s'executen aplicacions de graf. Per maximitzar la utilització del sistema, aquesta tesi proposa executar múltiples aplicacions de grafs al mateix processador, assignant a cadascuna el nombre òptim de nuclis (i adaptant el nombre de fils creats) dinàmicament.
Pel que fa a la computació al núvol, aquesta tesi aborda tres grans reptes: la complexa infraestructura d'aquests sistemes, les característiques de les seues aplicacions i l'impacte de la interferència entre màquines virtuals (MV). En primer lloc, aquesta tesi presenta la plataforma experimental desenvolupada amb els principals components d'un sistema al núvol. Després, es presenta un ampli estudi de caracterització sobre un conjunt d'aplicacions de latència crítica representatives per identificar els punts que els proveïdors de serveis al núvol han de tenir en compte per millorar el rendiment i la utilització dels recursos. Finalment, es fa una proposta que de manera dinàmica permet detectar i estimar la interferència entre MV. L'enfocament es basa en mètriques que es poden monitoritzar fàcilment al núvol públic, ja que les MV han de tractar-se com a "caixes negres". Tota la investigació descrita es duu a terme respectant les restriccions i complint els requisits per ser aplicable en entorns de producció al núvol públic.
En resum, aquesta tesi aborda la contenció en els principals recursos compartits del sistema en el context de la consolidació de servidors. Els resultats experimentals mostren que s'obtenen importants guanys sobre Linux. En els processadors amb una LLC inclusiva, el temps d'execució (TT) es redueix en més d'un 40%, mentres que es millora l'IPC en més d'un 3%. En una LLC no inclusiva, l'equitat i el TT es milloren en un 44% i un 24%, respectivament, al mateix temps que s'obté una millora del rendiment de fins a un 3,5%. Distribuint els nuclis del processador de manera eficient es pot obtindre una equitat quasi perfecta (94%), i el TT pot reduir-se fins a un 80%. En entorns de computació al núvol, la degradació del rendiment pot estimar-se amb un error de predicció global d'un 5%. Totes les propostes presentades en aquesta tesi han sigut dissenyades per a ser aplicades en processadors de servidors comercials sense requerir cap informació prèvia, prenent decisions dinàmicament amb dades recollides dels comptadors de prestacions. / [EN] One of the main concerns of today's data centers is to maximize server utilization. In each server processor, multiple applications are executed concurrently, increasing resource efficiency. However, performance and fairness highly depend on the share of resources that each application receives, leading to performance unpredictability. The rising number of cores (and running applications) with every new generation of processors is leading to a growing concern for interference at the shared resources. This thesis focuses on addressing resource interference when different applications are consolidated on the same server processor from two main perspectives: high-performance computing (HPC) and cloud computing.
In the context of HPC, resource management approaches are proposed to reduce inter-application interference at two major critical resources: the last level cache (LLC) and the processor cores. The LLC plays a key role in the system performance of current multi-cores by reducing the number of long-latency main memory accesses. LLC partitioning approaches are proposed for both inclusive and non-inclusive LLCs, as both designs are present in current server processors. In both cases, newly problematic LLC behaviors are identified and efficiently detected, granting a larger cache share to those applications that use best the LLC space. As for processor cores, many parallel applications, like graph applications, do not scale well with an increasing number of cores. Moreover, the default Linux time-sharing scheduler performs poorly when running graph applications, which process vast amounts of data. To maximize system utilization, this thesis proposes to co-locate multiple graph applications on the same server processor by assigning the optimal number of cores to each one, dynamically adapting the number of threads spawned by the running applications.
When studying the impact of system-shared resources on cloud computing, this thesis addresses three major challenges: the complex infrastructure of cloud systems, the nature of cloud applications, and the impact of inter-VM interference. Firstly, this thesis presents the experimental platform developed to perform representative cloud studies with the main cloud system components (hardware and software). Secondly, an extensive characterization study is presented on a set of representative latency-critical workloads which must meet strict quality of service (QoS) requirements. The aim of the studies is to outline issues cloud providers should consider to improve performance and resource utilization. Finally, we propose an online approach that detects and accurately estimates inter-VM interference when co-locating multiple latency-critical VMs. The approach relies on metrics that can be easily monitored in the public cloud as VMs are handled as ``black boxes''. The research described above is carried out following the restrictions and requirements to be applicable to public cloud production systems.
In summary, this thesis addresses contention in the main system shared resources in the context of server consolidation, both in HPC and cloud computing. Experimental results show that important gains are obtained over the Linux OS scheduler by reducing interference. In inclusive LLCs, turnaround time (TT) is reduced by over 40% while improving IPC by more than 3%. In non-inclusive LLCs, fairness and TT are improved by 44% and 24%, respectively, while improving performance by up to 3.5%. By distributing core resources efficiently, almost perfect fairness can be obtained (94%), and TT can be reduced by up to 80%. In cloud computing, performance degradation due to resource contention can be estimated with an overall prediction error of 5%. All the approaches proposed in this thesis have been designed to be applied in commercial server processors without requiring any prior information, making decisions dynamically with data collected from hardware performance counters. / Pons Escat, L. (2023). Interference Analysis and Resource Management in Server Processors: from HPC to Cloud Computing [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/195840
|
Page generated in 0.0683 seconds