11 |
Analysis and Applications of the Heterogeneous Multiscale Methods for Multiscale Elliptic and Hyperbolic Partial Differential EquationsArjmand, Doghonay January 2013 (has links)
This thesis concerns the applications and analysis of the Heterogeneous Multiscale methods (HMM) for Multiscale Elliptic and Hyperbolic Partial Differential Equations. We have gathered the main contributions in two papers. The first paper deals with the cell-boundary error which is present in multi-scale algorithms for elliptic homogenization problems. Typical multi-scale methods have two essential components: a macro and a micro model. The micro model is used to upscale parameter values which are missing in the macro model. Solving the micro model requires, on the other hand, imposing boundary conditions on the boundary of the microscopic domain. Imposing a naive boundary condition leads to $O(\varepsilon/\eta)$ error in the computation, where $\varepsilon$ is the size of the microscopic variations in the media and $\eta$ is the size of the micro-domain. Until now, strategies were proposed to improve the convergence rate up to fourth-order in $\varepsilon/\eta$ at best. However, the removal of this error in multi-scale algorithms still remains an important open problem. In this paper, we present an approach with a time-dependent model which is general in terms of dimension. With this approach we are able to obtain $O((\varepsilon/\eta)^q)$ and $O((\varepsilon/\eta)^q + \eta^p)$ convergence rates in periodic and locally-periodic media respectively, where $p,q$ can be chosen arbitrarily large. In the second paper, we analyze a multi-scale method developed under the Heterogeneous Multi-Scale Methods (HMM) framework for numerical approximation of wave propagation problems in periodic media. In particular, we are interested in the long time $O(\varepsilon^{-2})$ wave propagation. In the method, the microscopic model uses the macro solutions as initial data. In short-time wave propagation problems a linear interpolant of the macro variables can be used as the initial data for the micro-model. However, in long-time multi-scale wave problems the linear data does not suffice and one has to use a third-degree interpolant of the coarse data to capture the $O(1)$ dispersive effects apperaing in the long time. In this paper, we prove that through using an initial data consistent with the current macro state, HMM captures this dispersive effects up to any desired order of accuracy in terms of $\varepsilon/\eta$. We use two new ideas, namely quasi-polynomial solutions of periodic problems and local time averages of solutions of periodic hyperbolic PDEs. As a byproduct, these ideas naturally reveal the role of consistency for high accuracy approximation of homogenized quantities. / <p>QC 20130926</p>
|
12 |
Multiscale Methods and Uncertainty QuantificationElfverson, Daniel January 2015 (has links)
In this thesis we consider two great challenges in computer simulations of partial differential equations: multiscale data, varying over multiple scales in space and time, and data uncertainty, due to lack of or inexact measurements. We develop a multiscale method based on a coarse scale correction, using localized fine scale computations. We prove that the error in the solution produced by the multiscale method decays independently of the fine scale variation in the data or the computational domain. We consider the following aspects of multiscale methods: continuous and discontinuous underlying numerical methods, adaptivity, convection-diffusion problems, Petrov-Galerkin formulation, and complex geometries. For uncertainty quantification problems we consider the estimation of p-quantiles and failure probability. We use spatial a posteriori error estimates to develop and improve variance reduction techniques for Monte Carlo methods. We improve standard Monte Carlo methods for computing p-quantiles and multilevel Monte Carlo methods for computing failure probability.
|
13 |
Finite element methods for multiscale/multiphysics problemsSöderlund, Robert January 2011 (has links)
In this thesis we focus on multiscale and multiphysics problems. We derive a posteriori error estimates for a one way coupled multiphysics problem, using the dual weighted residual method. Such estimates can be used to drive local mesh refinement in adaptive algorithms, in order to efficiently obtain good accuracy in a desired goal quantity, which we demonstrate numerically. Furthermore we prove existence and uniqueness of finite element solutions for a two way coupled multiphysics problem. The possibility of deriving dual weighted a posteriori error estimates for two way coupled problems is also addressed. For a two way coupled linear problem, we show numerically that unless the coupling of the equations is to strong the propagation of errors between the solvers goes to zero. We also apply a variational multiscale method to both an elliptic and a hyperbolic problem that exhibits multiscale features. The method is based on numerical solutions of decoupled local fine scale problems on patches. For the elliptic problem we derive an a posteriori error estimate and use an adaptive algorithm to automatically tune the resolution and patch size of the local problems. For the hyperbolic problem we demonstrate the importance of how to construct the patches of the local problems, by numerically comparing the results obtained for symmetric and directed patches.
|
14 |
Statistical Multiscale Segmentation: Inference, Algorithms and ApplicationsSieling, Hannes 22 January 2014 (has links)
No description available.
|
15 |
Improved Statistical Methods for Elliptic Stochastic Homogenization Problems : Application of Multi Level- and Multi Index Monte Carlo on Elliptic Stochastic Homogenization ProblemsDaloul, Khalil January 2023 (has links)
In numerical multiscale methods, one relies on a coupling between macroscopic model and a microscopic model. The macroscopic model does not include the microscopic properties that the microscopic model offers and that are vital for the desired solution. Such microscopic properties include parameters like material coefficients and fluxes which may variate microscopically in the material. The effective values of this data can be computed by running local microscale simulations while averaging the microscopic data. One desires the effect of the microscopic coefficients on a macroscopic scale, and this can be done using classical homogenisation theory. One method in the homogenization theory is to use local elliptic cell problems in order to compute the homogenized constants and this results in <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Clambda%20/R" data-classname="equation_inline" data-title="" /> error where <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Clambda" data-classname="equation" /> is the wavelength of the microscopic variations and <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?R" data-classname="mimetex" data-title="" /> is the size of the simulation domain. However, one could greatly improve the accuracy by a slight modification in the homogenisation elliptic PDE and use a filter in the averaging process to get much better orders of error. The modification relates the elliptic PDE to a parabolic one, that could be solved and integrated in time to get the elliptic PDE's solution. In this thesis I apply the modified elliptic cell homogenization method with a qth order filter to compute the homogenized diffusion constant in a 2d Poisson equation on a rectangular domain. Two cases were simulated. The diffusion coefficients used in the first case was a deterministic 2d matrix function and in the second case I used stochastic 2d matrix function, which results in a 2d stochastic differential equation (SDE). In the second case two methods were used to determine the expected value of the homogenized constants, firstly the multi-level Monte Carlo (MLMC) and secondly its generalization multi-index Monte Carlo (MIMC). The performance of MLMC and MIMC is then compared when used in the process of the homogenization. In the homogenization process the finite element notations in 2d were used to estimate a solution of the Poisson equation. The grid spatial steps were varied in a first order differences in MLMC (square mesh) and first order mixed differences in MIMC (which allows for rectangular mesh).
|
16 |
Multiscale methods in signal processing for adaptive opticsMaji, Suman Kumar 14 November 2013 (has links) (PDF)
In this thesis, we introduce a new approach to wavefront phase reconstruction in Adaptive Optics (AO) from the low-resolution gradient measurements provided by a wavefront sensor, using a non-linear approach derived from the Microcanonical Multiscale Formalism (MMF). MMF comes from established concepts in statistical physics, it is naturally suited to the study of multiscale properties of complex natural signals, mainly due to the precise numerical estimate of geometrically localized critical exponents, called the singularity exponents. These exponents quantify the degree of predictability, locally, at each point of the signal domain, and they provide information on the dynamics of the associated system. We show that multiresolution analysis carried out on the singularity exponents of a high-resolution turbulent phase (obtained by model or from data) allows a propagation along the scales of the gradients in low-resolution (obtained from the wavefront sensor), to a higher resolution. We compare our results with those obtained by linear approaches, which allows us to offer an innovative approach to wavefront phase reconstruction in Adaptive Optics.
|
17 |
Numerical Methods for Darcy Flow Problems with Rough and Uncertain DataHellman, Fredrik January 2017 (has links)
We address two computational challenges for numerical simulations of Darcy flow problems: rough and uncertain data. The rapidly varying and possibly high contrast permeability coefficient for the pressure equation in Darcy flow problems generally leads to irregular solutions, which in turn make standard solution techniques perform poorly. We study methods for numerical homogenization based on localized computations. Regarding the challenge of uncertain data, we consider the problem of forward propagation of uncertainty through a numerical model. More specifically, we consider methods for estimating the failure probability, or a point estimate of the cumulative distribution function (cdf) of a scalar output from the model. The issue of rough coefficients is discussed in Papers I–III by analyzing three aspects of the localized orthogonal decomposition (LOD) method. In Paper I, we define an interpolation operator that makes the localization error independent of the contrast of the coefficient. The conditions for its applicability are studied. In Paper II, we consider time-dependent coefficients and derive computable error indicators that are used to adaptively update the multiscale space. In Paper III, we derive a priori error bounds for the LOD method based on the Raviart–Thomas finite element. The topic of uncertain data is discussed in Papers IV–VI. The main contribution is the selective refinement algorithm, proposed in Paper IV for estimating quantiles, and further developed in Paper V for point evaluation of the cdf. Selective refinement makes use of a hierarchy of numerical approximations of the model and exploits computable error bounds for the random model output to reduce the cost complexity. It is applied in combination with Monte Carlo and multilevel Monte Carlo methods to reduce the overall cost. In Paper VI we quantify the gains from applying selective refinement to a two-phase Darcy flow problem.
|
18 |
New enriched element methods for unsteady reaction-advection-diffusion models / Novos métodos de elementos finitos enriquecidos aplicados a modelos de reação-advecção-difusão transientesJairo Valões de Alencar Ramalho 20 December 2005 (has links)
Several problems in physics and engineering are modeled by reaction-advection-diffusion (RAD) equations. However, when the diffusive terms are small compared with the other ones, these problems can become difficult to solve numerically. Besides, formulating the unsteady version of these models in a semi-discrete fashion, it can be interpreted that the overall diffusivity gets smaller as the time step decreases. To overcome these drawbacks, this thesis considers the development of Galerkin (or Petrov-Galerkin) finite element methods based on approximation spaces enriched by residual-free bubbles (RFB) or multiscale functions. Beginning with the unsteady reaction-diffusion problem, new methods using multiscale functions are presented which improve the solutions in the reaction-dominated regime and/or when small time steps are adopted. They also give rise to a general concept of stabilizing unsteady problems differently along the time. In the following, it is shown that switching RFB by suitable multiscale functions in the elements connected to the outflow boundaries of the domain increases the accuracy of the solutions in this region for RAD problems with advection. Next, this methodology is further studied for systems of RAD equations. In a final contribution, an extension of the RFB method is introduced for the shallow waters equations. All these methods are tested through benchmark problems and compared with stabilized methods presenting stable and accurate results. / A modelagem de vários problemas físicos e de engenharia envolve a solução de problemas de transporte do tipo reação-advecção-difusão (RAD), porém, estes podem tornar-se singularmente perturbados quando os termos difusivos são pequenos comparados aos demais. Além disso, ao adotar formulações semi-discretas em problemas transientes, observa-se que diminuir o passo de tempo tem um efeito de redução da componente difusiva. Para superar estas dificuldades, esta tese considera o desenvolvimento de métodos de elementos finitos de Galerkin (ou Petrov-Galerkin) baseados em espaços de aproximação enriquecidos por funções bolhas livres do resíduo (RFB) ou funções multiescala. Começando pelo problema de reação-difusão transiente, novos métodos utilizando funções multiescala são apresentados, os quais melhoram as soluções no regime reativo-dominante e/ou quando pequenos passos de tempo são adotados. Com estes métodos, discute-se também o conceito de estabilização variável ao longo do tempo para problemas transientes. Na seqüência, verifica-se que utilizar funções multiescala nos elementos conectados às fronteiras de saída de fluxo do domínio e RFB nos demais elementos aumenta a precisão das soluções nesta região em problemas de RAD com advecção dominante. A seguir, esta metodologia é estudada para sistemas de RAD. Como contribuição final, estende-se o método RFB para o modelo de águas rasas. Todos estes métodos são submetidos a testes de robustez e comparados com métodos estabilizados, apresentando resultados estáveis e precisos.
|
19 |
Heterogeneous Multiscale Change-Point Inference and its Application to Ion Channel RecordingsPein, Florian 20 October 2017 (has links)
No description available.
|
20 |
Multiscale methods in signal processing for adaptive optics / Méthode multi-échelles en traitement du signal pour optique adaptativeMaji, Suman Kumar 14 November 2013 (has links)
Dans cette thèse nous introduisons une approche nouvelle pour la reconstruction d’un front d’ondes en Optique Adaptative (OA), à partir des données de gradients à basse résolution en provenance de l’analyseur de front d’ondes, et en utilisant une approche non-linéaire issue du Formalisme Multiéchelles Mi-crocanonique (FMM). Le FMM est issu de concepts établis en physique statistique, il est naturellement approprié à l’étude des propriétés multiéchelles des signaux naturels complexes, principalement grâce à l’estimation numérique précise des exposants critiques localisés géométriquement, appelés exposants de singularité. Ces exposants quantifient le degré de prédictabilité localement en chaque point du domaine du signal, et ils renseignent sur la dynamique du système associé. Nous montrons qu’une analyse multirésolution opérée sur les exposants de singularité d’une phase turbulente haute résolution (obtenus par modèle ou à partir des données) permet de propager, le long des échelles, les gradients en basse résolution issus de l’analyseur du front d’ondes jusqu’à une résolution plus élevée. Nous comparons nos résultats à ceux obtenus par les approches linéaires, ce qui nous permet de proposer une approche novatrice à la reconstruction de fronts d’onde en Optique Adaptative. / In this thesis, we introduce a new approach to wavefront phase reconstruction in Adaptive Optics (AO) from the low-resolution gradient measurements provided by a wavefront sensor, using a non-linear approach derived from the Microcanonical Multiscale Formalism (MMF). MMF comes from established concepts in statistical physics, it is naturally suited to the study of multiscale properties of complex natural signals, mainly due to the precise numerical estimate of geometrically localized critical exponents, called the singularity exponents. These exponents quantify the degree of predictability, locally, at each point of the signal domain, and they provide information on the dynamics of the associated system. We show that multiresolution analysis carried out on the singularity exponents of a high-resolution turbulent phase (obtained by model or from data) allows a propagation along the scales of the gradients in low-resolution (obtained from the wavefront sensor), to a higher resolution. We compare our results with those obtained by linear approaches, which allows us to offer an innovative approach to wavefront phase reconstruction in Adaptive Optics.
|
Page generated in 0.1209 seconds