• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 14
  • 6
  • Tagged with
  • 41
  • 30
  • 26
  • 16
  • 12
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Méthodes de démélange et de fusion des images multispectrales et hyperspectrales de télédétection spatiale / Unmixing and fusion methods for remote sensing multispectral and hypersectral images

Benhalouche, Fatima Zohra 03 May 2018 (has links)
Au cours de cette thèse, nous nous sommes intéressés à deux principales problématiques de la télédétection spatiale de milieux urbains qui sont : le "démélange spectral " et la "fusion". Dans la première partie de la thèse, nous avons étudié le démélange spectral d'images hyperspectrales de scènes de milieux urbains. Les méthodes développées ont pour objectif d'extraire, d'une manière non-supervisée, les spectres des matériaux présents dans la scène imagée. Le plus souvent, les méthodes de démélange spectral (méthodes dites de séparation aveugle de sources) sont basées sur le modèle de mélange linéaire. Cependant, lorsque nous sommes en présence de paysage non-plat, comme c'est le cas en milieu urbain, le modèle de mélange linéaire n'est plus valide et doit être remplacé par un modèle de mélange non-linéaire. Ce modèle non-linéaire peut être réduit à un modèle de mélange linéaire-quadratique/bilinéaire. Les méthodes de démélange spectral proposées sont basées sur la factorisation matricielle avec contrainte de non-négativité, et elles sont conçues pour le cas particulier de scènes urbaines. Les méthodes proposées donnent généralement de meilleures performances que les méthodes testées de la littérature. La seconde partie de cette thèse à été consacrée à la mise en place de méthodes qui permettent la fusion des images multispectrale et hyperspectrale, afin d'améliorer la résolution spatiale de l'image hyperspectrale. Cette fusion consiste à combiner la résolution spatiale élevée des images multispectrales et la haute résolution spectrale des images hyperspectrales. Les méthodes mises en place sont des méthodes conçues pour le cas particulier de fusion de données de télédétection de milieux urbains. Ces méthodes sont basées sur des techniques de démélange spectral linéaire-quadratique et utilisent la factorisation en matrices non-négatives. Les résultats obtenus montrent que les méthodes développées donnent globalement des performances satisfaisantes pour la fusion des données hyperspectrale et multispectrale. Ils prouvent également que ces méthodes surpassent significativement les approches testées de la littérature. / In this thesis, we focused on two main problems of the spatial remote sensing of urban environments which are: "spectral unmixing" and "fusion". In the first part of the thesis, we are interested in the spectral unmixing of hyperspectral images of urban scenes. The developed methods are designed to unsupervisely extract the spectra of materials contained in an imaged scene. Most often, spectral unmixing methods (methods known as blind source separation) are based on the linear mixing model. However, when facing non-flat landscape, as in the case of urban areas, the linear mixing model is not valid any more, and must be replaced by a nonlinear mixing model. This nonlinear model can be reduced to a linear-quadratic/bilinear mixing model. The proposed spectral unmixing methods are based on matrix factorization with non-negativity constraint, and are designed for urban scenes. The proposed methods generally give better performance than the tested literature methods. The second part of this thesis is devoted to the implementation of methods that allow the fusion of multispectral and hyperspectral images, in order to improve the spatial resolution of the hyperspectral image. This fusion consists in combining the high spatial resolution of multispectral images and high spectral resolution of hyperspectral images. The implemented methods are designed for urban remote sensing data. These methods are based on linear-quadratic spectral unmixing techniques and use the non-negative matrix factorization. The obtained results show that the developed methods give good performance for hyperspectral and multispectral data fusion. They also show that these methods significantly outperform the tested literature approaches.
32

Applicabilité de la texture couleur à la différentiation des classes d’occupation du territoire sur des images satellitales multispectrales

Boyer, André 08 1900 (has links)
La texture est un élément clé pour l’interprétation des images de télédétection à fine résolution spatiale. L’intégration de l’information texturale dans un processus de classification automatisée des images se fait habituellement via des images de texture, souvent créées par le calcul de matrices de co-occurrences (MCO) des niveaux de gris. Une MCO est un histogramme des fréquences d’occurrence des paires de valeurs de pixels présentes dans les fenêtres locales, associées à tous les pixels de l’image utilisée; une paire de pixels étant définie selon un pas et une orientation donnés. Les MCO permettent le calcul de plus d’une dizaine de paramètres décrivant, de diverses manières, la distribution des fréquences, créant ainsi autant d’images texturales distinctes. L’approche de mesure des textures par MCO a été appliquée principalement sur des images de télédétection monochromes (ex. images panchromatiques, images radar monofréquence et monopolarisation). En imagerie multispectrale, une unique bande spectrale, parmi celles disponibles, est habituellement choisie pour générer des images de texture. La question que nous avons posée dans cette recherche concerne justement cette utilisation restreinte de l’information texturale dans le cas des images multispectrales. En fait, l’effet visuel d’une texture est créé, non seulement par l’agencement particulier d’objets/pixels de brillance différente, mais aussi de couleur différente. Plusieurs façons sont proposées dans la littérature pour introduire cette idée de la texture à plusieurs dimensions. Parmi celles-ci, deux en particulier nous ont intéressés dans cette recherche. La première façon fait appel aux MCO calculées bande par bande spectrale et la seconde utilise les MCO généralisées impliquant deux bandes spectrales à la fois. Dans ce dernier cas, le procédé consiste en le calcul des fréquences d’occurrence des paires de valeurs dans deux bandes spectrales différentes. Cela permet, en un seul traitement, la prise en compte dans une large mesure de la « couleur » des éléments de texture. Ces deux approches font partie des techniques dites intégratives. Pour les distinguer, nous les avons appelées dans cet ouvrage respectivement « textures grises » et « textures couleurs ». Notre recherche se présente donc comme une analyse comparative des possibilités offertes par l’application de ces deux types de signatures texturales dans le cas spécifique d’une cartographie automatisée des occupations de sol à partir d’une image multispectrale. Une signature texturale d’un objet ou d’une classe d’objets, par analogie aux signatures spectrales, est constituée d’une série de paramètres de texture mesurés sur une bande spectrale à la fois (textures grises) ou une paire de bandes spectrales à la fois (textures couleurs). Cette recherche visait non seulement à comparer les deux approches intégratives, mais aussi à identifier la composition des signatures texturales des classes d’occupation du sol favorisant leur différentiation : type de paramètres de texture / taille de la fenêtre de calcul / bandes spectrales ou combinaisons de bandes spectrales. Pour ce faire, nous avons choisi un site à l’intérieur du territoire de la Communauté Métropolitaine de Montréal (Longueuil) composé d’une mosaïque d’occupations du sol, caractéristique d’une zone semi urbaine (résidentiel, industriel/commercial, boisés, agriculture, plans d’eau…). Une image du satellite SPOT-5 (4 bandes spectrales) de 10 m de résolution spatiale a été utilisée dans cette recherche. Puisqu’une infinité d’images de texture peuvent être créées en faisant varier les paramètres de calcul des MCO et afin de mieux circonscrire notre problème nous avons décidé, en tenant compte des études publiées dans ce domaine : a) de faire varier la fenêtre de calcul de 3*3 pixels à 21*21 pixels tout en fixant le pas et l’orientation pour former les paires de pixels à (1,1), c'est-à-dire à un pas d’un pixel et une orientation de 135°; b) de limiter les analyses des MCO à huit paramètres de texture (contraste, corrélation, écart-type, énergie, entropie, homogénéité, moyenne, probabilité maximale), qui sont tous calculables par la méthode rapide de Unser, une approximation des matrices de co-occurrences, c) de former les deux signatures texturales par le même nombre d’éléments choisis d’après une analyse de la séparabilité (distance de Bhattacharya) des classes d’occupation du sol; et d) d’analyser les résultats de classification (matrices de confusion, exactitudes, coefficients Kappa) par maximum de vraisemblance pour conclure sur le potentiel des deux approches intégratives; les classes d’occupation du sol à reconnaître étaient : résidentielle basse et haute densité, commerciale/industrielle, agricole, boisés, surfaces gazonnées (incluant les golfs) et plans d’eau. Nos principales conclusions sont les suivantes a) à l’exception de la probabilité maximale, tous les autres paramètres de texture sont utiles dans la formation des signatures texturales; moyenne et écart type sont les plus utiles dans la formation des textures grises tandis que contraste et corrélation, dans le cas des textures couleurs, b) l’exactitude globale de la classification atteint un score acceptable (85%) seulement dans le cas des signatures texturales couleurs; c’est une amélioration importante par rapport aux classifications basées uniquement sur les signatures spectrales des classes d’occupation du sol dont le score est souvent situé aux alentours de 75%; ce score est atteint avec des fenêtres de calcul aux alentours de11*11 à 15*15 pixels; c) Les signatures texturales couleurs offrant des scores supérieurs à ceux obtenus avec les signatures grises de 5% à 10%; et ce avec des petites fenêtres de calcul (5*5, 7*7 et occasionnellement 9*9) d) Pour plusieurs classes d’occupation du sol prises individuellement, l’exactitude dépasse les 90% pour les deux types de signatures texturales; e) une seule classe est mieux séparable du reste par les textures grises, celle de l’agricole; f) les classes créant beaucoup de confusions, ce qui explique en grande partie le score global de la classification de 85%, sont les deux classes du résidentiel (haute et basse densité). En conclusion, nous pouvons dire que l’approche intégrative par textures couleurs d’une image multispectrale de 10 m de résolution spatiale offre un plus grand potentiel pour la cartographie des occupations du sol que l’approche intégrative par textures grises. Pour plusieurs classes d’occupations du sol un gain appréciable en temps de calcul des paramètres de texture peut être obtenu par l’utilisation des petites fenêtres de traitement. Des améliorations importantes sont escomptées pour atteindre des exactitudes de classification de 90% et plus par l’utilisation des fenêtres de calcul de taille variable adaptées à chaque type d’occupation du sol. Une méthode de classification hiérarchique pourrait être alors utilisée afin de séparer les classes recherchées une à la fois par rapport au reste au lieu d’une classification globale où l’intégration des paramètres calculés avec des fenêtres de taille variable conduirait inévitablement à des confusions entre classes. / Texture is a key element in interpreting remotely sensed images of fine spatial resolution. The integration of textural information in an automatic image-classification process is usually done via textural images, which are often created by calculating gray levels co-occurrences matrices (COM). A COM is a histogram of frequencies of pairs of pixel values present in local windows associated with all pixels in the used image; each pixel pair being formed using a given orientation and spacing. COM allows calculation for more than a dozen of parameters describing in various ways the frequency distribution, creating thus as many different textural images. Texture measurements approach based on COMs had been mainly applied on monochrome images (e.g. panchromatic, single polarisation and frequency radar images). In the case of multispectral images, a single spectral band, among those available, is usually chosen to generate texture images. The question we asked in this research concerns precisely this limited use of textural information in the case of multispectral images. In fact, the visual effect of a texture is created, not only by the spatial arrangement of variable objects/pixels brightness, but also of different colors. Several ways are suggested in the literature to introduce this concept of multi-dimensional texture. In this research, two of them were of particularly interested us. In the first way COMs are calculated spectral band by band and in the second one, generalized COMs are applied involving the joint use of two spectral bands. In the latter case, the pairs of pixel values are defined in two different spectral bands. This allows, in a single treatment, for a broad accounting of the "color" element composing a texture. These two approaches are called integrative techniques. To distinguish them, we call them respectively “gray textures” and “color textures”. Our research concerns the comparative analysis of the opportunities offered by applying these two types of textural signatures in the specific case of an automated land cover mapping using multispectral images. A textural signature of an object or class of objects, by analogy to spectral signatures, consists in a set of texture parameters measured; band by band (grey textures), or by pairs of bands (color textures).This research was designed not only to compare the two integrative approaches, but also to identify the components of textural signatures favouring the differentiation of land cover classes: texture parameters, window sizes and bands selection. To do this, a site within the territory of the Montreal Metropolitan Community (Longueuil) was chosen with a diversity of land covers representative of a semi-urban area. (residential, industrial / commercial, woodlots , agriculture, water bodies…). A SPOT-5 (4 spectral bands) image of 10m spatial resolution was used in this research. Since an infinite number of texture images can be created by varying the design parameters of COM, and to better define our problem, we have decided, taking into account studies published in this field: a) to vary the computation window from 3*3 to 21*21 pixels while setting the pixel spacing and direction to (1,1); that is to say, an spacing of 1 and an orientation of 135 ° between pairs of pixels. b) limit the COM analysis to eight texture parameters (contrast, correlation, standard deviation, energy, entropy, homogeneity, average, maximum probability), all of which are computable by the Unser’s fast-COM-approximation method, c) form the two textural signatures by the same number of elements chosen from a separability analysis (Bhattacharya distance) between land cover classes, and d) analyse the results (confusion matrices, accuracies, kappa) obtained using a maximum likelihood classification algorithm to conclude on the potential of both integrative approaches; classes to be recognized included: low and high density residential, commercial / industrial, agricultural, woodlots, turf (including golf) water bodies, clouds and their shadows. Our main conclusions are as follows a) except maximum probability, all other textural parameters are useful in the formation of textural signatures; mean and standard deviation are most useful in the formation of gray textures while contrast and correlation, are the best in the case of color textures b) the overall classification accuracy achieved an acceptable score (85%), only in the case of color textural signatures. This is a significant improvement compared to classifications based solely on spectral signatures, whose accuracies are often situated around 75%. This score is reached with windows size from about 11*11 to 15 * 15 pixels, c) Textural colors signatures offer higher scores, ranging from 5% to 10%, than those obtained by gray signatures. This is true while using the smaller process windows (5*5, 7*7, and occasionally 9*9) d) For several land cover classes examined individually, the accuracy is above 90% regardless of the used textural signatures e) Only one class is better separated from the rest by gray textures, the agricultural one; f) Classes creating a lot of confusion, which largely explains the overall classification score of 85 %, are the two residential classes (high and low density). As a final conclusion, we can say that the integrative approach by color textures provides a greater potential for mapping land covers using multispectral images than the integrative approach by gray textures. For several land cover classes an appreciable gain computing time of textural parameters may be obtained using smaller size windows. Significant improvements of the classification results (even better than 90%) are expected using calculation windows with sizes better adapted to each classes particular texture characteristics, A hierarchical classification method could then be used to separate each class at a time from all others, instead of a broad classification where the integration of parameters calculated with varying size windows, would inevitably lead to confusion between classes.
33

Etude de matrices de filtres Fabry Pérot accordables en technologie MOEMS intégré 3D : Application à l'imagerie multispectrale

Bertin, Hervé 23 July 2013 (has links) (PDF)
L'imagerie multispectrale permet d'améliorer la détection et la reconnaissance de cibles dans les applications de surveillance. Elle consiste à analyser des images de la même scène acquises simultanément dans plusieurs bandes spectrales grâce à un filtrage. Cette thèse étudie la possibilité de réaliser une matrice de 4 filtres Fabry Pérot (FP) intégrés 3D et ajustables par actionnement électrostatique dans le domaine visible-proche infrarouge. Les miroirs fixes des filtres FP sont des multicouches ZnS/YF₃ déposés sur un wafer de borosilicate, et les miroirs mobiles sont des membranes multicouches PECVD SiNH/SiOH encastrées sur une structure mobile très compacte micro-usinée dans un wafer en silicium. Les performances optiques des filtres FP ont été optimisées en prenant en compte la dissymétrie et le déphasage à la réflexion des miroirs. La structure mobile a été modélisée par éléments finis pour minimiser ses déformations lors de l'actionnement. Les étapes critiques des procédés de fabrication des miroirs mobiles en technologie Si ou SOI ont été mises au point : i) la fabrication et la libération par gravures profondes DRIE et XeF₂ des membranes multicouches avec une contrainte résiduelle ajustée par recuit et une réflectance voisine de 50% dans une large gamme spectrale, ii) le contrôle des vitesse de la gravure DRIE avec des motifs temporaires permettant la gravure simultanée de motifs de largeur et de profondeur variables, et iii) la délimitation de motifs sur surfaces fortement structurées à l'aide de pochoirs alignés mécaniquement ou de films secs photosensibles. Ces travaux ouvrent la voie vers une réalisation complète d'une matrice de filtres FP intégrés 3D.
34

Développement d'un outil d'imagerie dédié à l'acquisition, à l'analyse et à la caractérisation multispectrale des lésions dermatologiques

Jolivot, Romuald 07 December 2011 (has links) (PDF)
L'évaluation visuelle de lésions cutanées est l'analyse la plus couramment réalisée par les dermatologues. Ce diagnostic s'effectue principalement à l'œil nu et se base sur des critères tels que la taille, la forme, la symétrie mais principalement la couleur. Cependant, cette analyse est subjective car dépendante de l'expérience du praticien et des conditions d'utilisation. Nous proposons dans ce manuscrit (1) le développement d'une caméra multispectrale spécialement conçue pour un usage en dermatologie. Cette caméra multispectrale se base sur la technologie de roue porte-filtres composée de filtres interférentiels et d'un algorithme basé sur les réseaux de neurones générant un cube hyperspectral de données cutanées. Cet ensemble combine l'avantage d'un spectrophotomètre (information spectrale), et celui d'une caméra (information spatiale). Son intérêt est également de délivrer une information reproductible et indépendante des conditions d'acquisition. La mise en place d'un protocole d'acquisition de données de peaux saines issues de cinq des six phototypes existants a permis la validation de notre système en comparant les spectres générés par notre système avec des spectres théoriques acquis par un spectrophotomètre professionnel. (2) La réflectance spectrale de données de peau fournit une information précieuse, car directement liée à sa composition en chromophores. La mesure quantitative des propriétés optiques du tissu cutané peut être basée sur la modélisation de la propagation de la lumière dans la peau. Pour cela, nous nous sommes appuyés sur le modèle de Kubelka-Munk, auquel nous avons associé une méthode d'optimisation basée sur les algorithmes évolutionnaires. Cette dernière apporte une réponse à l'inversion de ce modèle. A partir de cette approche, la quantification de divers paramètres de la peau peut être obtenue, tels que la mélanine et l'hémoglobine. (3) La validation de cette méthodologie est effectuée sur des données pathologiques (vitiligo et melasma) et permet de quantifier une différence de composition entre zone saine et zone affectée sur une même image.
35

Détection de points d'intérêt par acquisition compressée dans une image multispectrale

Rousseau, Sylvain 02 July 2013 (has links) (PDF)
Les capteurs multi- et hyper-spectraux génèrent un énorme flot de données. Un moyen de contourner cette difficulté est de pratiquer une acquisition compressée de l'objet multi- et hyper-spectral. Les données sont alors directement compressées et l'objet est reconstruit lorsqu'on en a besoin. L'étape suivante consiste à éviter cette reconstruction et à travailler directement avec les données compressées pour réaliser un traitement classique sur un objet de cette nature. Après avoir introduit une première approche qui utilise des outils riemanniens pour effectuer une détection de contours dans une image multispectrale, nous présentons les principes de l'acquisition compressée et différents algorithmes utilisés pour résoudre les problèmes qu'elle pose. Ensuite, nous consacrons un chapitre entier à l'étude détaillée de l'un d'entre eux, les algorithmes de type Bregman qui, par leur flexibilité et leur efficacité vont nous permettre de résoudre les minimisations rencontrées plus tard. On s'intéresse ensuite à la détection de signatures dans une image multispectrale et plus particulièrement à un algorithme original du Guo et Osher reposant sur une minimisation $L_1$. Cet algorithme est généralisé dans le cadre de l'acquisition compressée. Une seconde généralisation va permettre de réaliser de la détection de motifs dans une image multispectrale. Et enfin, nous introduirons de nouvelles matrices de mesures qui simplifie énormément les calculs tout en gardant de bonnes qualités de mesures.
36

Détection et classification de cibles multispectrales dans l'infrarouge

Maire, F. 14 February 2014 (has links) (PDF)
Les dispositifs de protection de sites sensibles doivent permettre de détecter des menaces potentielles suffisamment à l'avance pour pouvoir mettre en place une stratégie de défense. Dans cette optique, les méthodes de détection et de reconnaissance d'aéronefs se basant sur des images infrarouge multispectrales doivent être adaptées à des images faiblement résolues et être robustes à la variabilité spectrale et spatiale des cibles. Nous mettons au point dans cette thèse, des méthodes statistiques de détection et de reconnaissance d'aéronefs satisfaisant ces contraintes. Tout d'abord, nous spécifions une méthode de détection d'anomalies pour des images multispectrales, combinant un calcul de vraisemblance spectrale avec une étude sur les ensembles de niveaux de la transformée de Mahalanobis de l'image. Cette méthode ne nécessite aucune information a priori sur les aéronefs et nous permet d'identifier les images contenant des cibles. Ces images sont ensuite considérées comme des réalisations d'un modèle statistique d'observations fluctuant spectralement et spatialement autour de formes caractéristiques inconnues. L'estimation des paramètres de ce modèle est réalisée par une nouvelle méthodologie d'apprentissage séquentiel non supervisé pour des modèles à données manquantes que nous avons développée. La mise au point de ce modèle nous permet in fine de proposer une méthode de reconnaissance de cibles basée sur l'estimateur du maximum de vraisemblance a posteriori. Les résultats encourageants, tant en détection qu'en classification, justifient l'intérêt du développement de dispositifs permettant l'acquisition d'images multispectrales. Ces méthodes nous ont également permis d'identifier les regroupements de bandes spectrales optimales pour la détection et la reconnaissance d'aéronefs faiblement résolus en infrarouge.
37

Détection et classification de cibles multispectrales dans l'infrarouge

MAIRE, Florian 14 February 2014 (has links) (PDF)
Les dispositifs de protection de sites sensibles doivent permettre de détecter des menaces potentielles suffisamment à l'avance pour pouvoir mettre en place une stratégie de défense. Dans cette optique, les méthodes de détection et de reconnaissance d'aéronefs se basant sur des images infrarouge multispectrales doivent être adaptées à des images faiblement résolues et être robustes à la variabilité spectrale et spatiale des cibles. Nous mettons au point dans cette thèse, des méthodes statistiques de détection et de reconnaissance d'aéronefs satisfaisant ces contraintes. Tout d'abord, nous spécifions une méthode de détection d'anomalies pour des images multispectrales, combinant un calcul de vraisemblance spectrale avec une étude sur les ensembles de niveaux de la transformée de Mahalanobis de l'image. Cette méthode ne nécessite aucune information a priori sur les aéronefs et nous permet d'identifier les images contenant des cibles. Ces images sont ensuite considérées comme des réalisations d'un modèle statistique d'observations fluctuant spectralement et spatialement autour de formes caractéristiques inconnues. L'estimation des paramètres de ce modèle est réalisée par une nouvelle méthodologie d'apprentissage séquentiel non supervisé pour des modèles à données manquantes que nous avons développée. La mise au point de ce modèle nous permet in fine de proposer une méthode de reconnaissance de cibles basée sur l'estimateur du maximum de vraisemblance a posteriori. Les résultats encourageants, tant en détection qu'en classification, justifient l'intérêt du développement de dispositifs permettant l'acquisition d'images multispectrales. Ces méthodes nous ont également permis d'identifier les regroupements de bandes spectrales optimales pour la détection et la reconnaissance d'aéronefs faiblement résolus en infrarouge
38

Model-based and machine learning techniques for nonlinear image reconstruction in diffuse optical tomography / Techniques basées sur des modèles et apprentissage machine pour la reconstruction d’image non-linéaire en tomographie optique diffuse

Ettehadi, Seyedrohollah January 2017 (has links)
La tomographie optique diffuse (TOD) est une modalité d’imagerie biomédicale 3D peu dispendieuse et non-invasive qui permet de reconstruire les propriétés optiques d’un tissu biologique. Le processus de reconstruction d’images en TOD est difficile à réaliser puisqu’il nécessite de résoudre un problème non-linéaire et mal posé. Les propriétés optiques sont calculées à partir des mesures de surface du milieu à l’étude. Dans ce projet, deux méthodes de reconstruction non-linéaire pour la TOD ont été développées. La première méthode utilise un modèle itératif, une approche encore en développement qu’on retrouve dans la littérature. L’approximation de la diffusion est le modèle utilisé pour résoudre le problème direct. Par ailleurs, la reconstruction d’image à été réalisée dans différents régimes, continu et temporel, avec des mesures intrinsèques et de fluorescence. Dans un premier temps, un algorithme de reconstruction en régime continu et utilisant des mesures multispectrales est développé pour reconstruire la concentration des chromophores qui se trouve dans différents types de tissus. Dans un second temps, un algorithme de reconstruction est développé pour calculer le temps de vie de différents marqueurs fluorescents à partir de mesures optiques dans le domaine temporel. Une approche innovatrice a été d’utiliser la totalité de l’information du signal temporel dans le but d’améliorer la reconstruction d’image. Par ailleurs, cet algorithme permettrait de distinguer plus de trois temps de vie, ce qui n’a pas encore été démontré en imagerie de fluorescence. La deuxième méthode qui a été développée utilise l’apprentissage machine et plus spécifiquement l’apprentissage profond. Un modèle d’apprentissage profond génératif est mis en place pour reconstruire la distribution de sources d’émissions de fluorescence à partir de mesures en régime continu. Il s’agit de la première utilisation d’un algorithme d’apprentissage profond appliqué à la reconstruction d’images en TOD de fluorescence. La validation de la méthode est réalisée avec une mire aux propriétés optiques connues dans laquelle sont inséres des marqueurs fluorescents. La robustesse de cette méthode est démontrée même dans les situations où le nombre de mesures est limité et en présence de bruit. / Abstract : Diffuse optical tomography (DOT) is a low cost and noninvasive 3D biomedical imaging technique to reconstruct the optical properties of biological tissues. Image reconstruction in DOT is inherently a difficult problem, because the inversion process is nonlinear and ill-posed. During DOT image reconstruction, the optical properties of the medium are recovered from the boundary measurements at the surface of the medium. In this work, two approaches are proposed for non-linear DOT image reconstruction. The first approach relies on the use of iterative model-based image reconstruction, which is still under development for DOT and that can be found in the literature. A 3D forward model is developed based on the diffusion equation, which is an approximation of the radiative transfer equation. The forward model developed can simulate light propagation in complex geometries. Additionally, the forward model is developed to deal with different types of optical data such as continuous-wave (CW) and time-domain (TD) data for both intrinsic and fluorescence signals. First, a multispectral image reconstruction algorithm is developed to reconstruct the concentration of different tissue chromophores simultaneously from a set of CW measurements at different wavelengths. A second image reconstruction algorithm is developed to reconstruct the fluorescence lifetime (FLT) of different fluorescent markers from time-domain fluorescence measurements. In this algorithm, all the information contained in full temporal curves is used along with an acceleration technique to render the algorithm of practical use. Moreover, the proposed algorithm has the potential of being able to distinguish more than 3 FLTs, which is a first in fluorescence imaging. The second approach is based on machine learning techniques, in particular deep learning models. A deep generative model is proposed to reconstruct the fluorescence distribution map from CW fluorescence measurements. It is the first time that such a model is applied for fluorescence DOT image reconstruction. The performance of the proposed algorithm is validated with an optical phantom and a fluorescent marker. The proposed algorithm recovers the fluorescence distribution even from very noisy and sparse measurements, which is a big limitation in fluorescence DOT imaging.
39

Monitoring de l’environnement atmosphérique en milieu urbain intégrant des images de télédétection : le cas des particules fines (PM2.5)

Mejri, Karim 01 1900 (has links)
Epidemiological research around the world has shown that exposure of urban populations to fine microparticles (PM2.5) suspended in air from, among other things, car combustion, is responsible for many cases of lung and cardiovascular disease and even mortality. However, most of these studies examine urban centers as ensembles without considering that population exposure to microparticles is not homogeneous across an urban space. For example, individuals living near major arterial roads are much more exposed to microparticles than others living in low traffic neighborhoods. Unfortunately, ground stations measuring PM2.5 are few and far between to generate accurate microparticle concentration maps at fine scales. One way to spatialize information on microparticle concentrations is to introduce remotely sensed images that allows to calculate an optical parameter of aerosols, their optical depth. The use of medium-to-fine-resolution images is not common in this area. So, we wanted to look at their potential. Tests with hyperspectral and multispectral images at these resolutions have shown that optical depth can be estimated with enough accuracy. The AODFinder software developed for this purpose performs well. Unfortunately, the small sample of AOD values and PM2.5 concentration measurements did not allow us to conclude on the possibility of using AOD as a proxy for PM2.5 and thus on the possibility of refining microparticle monitoring at the local level. / Des recherches épidémiologiques à travers le monde ont mis en évidence que l’exposition des populations urbaines aux microparticules fines (PM2.5) en suspension dans l’air provenant, entre autres, de la combustion automobile, est à l’origine des nombreux cas des maladies pulmonaires et cardiovasculaires et même des cas de mortalité. Cependant, la plupart de ces études examinent les centres urbains comme des ensembles sans tenir compte que l’exposition des populations aux microparticules n’est pas homogène à travers un espace urbain. À titre d’exemple, les individus demeurant à proximité de grandes artères routières sont beaucoup plus exposés aux microparticules que d’autres demeurant dans des quartiers de faible circulation. Malheureusement, les stations terrestres de mesure des PM2.5 sont peu nombreuses pour permettre de générer des cartes de concentration des microparticules précises à des échelles fines. Un moyen pour spatialiser l’information sur les concentrations des microparticules est d’introduire l’imagerie de télédétection qui permet de calculer un paramètre optique des aérosols, leur profondeur optique. L’utilisation des images à résolution moyenne à fine n’est pas chose courante dans ce domaine. Ainsi nous avons voulu examiner leur potentiel. Les tests avec des images hyperspectrale et multispectrale à ces résolutions ont montré que la profondeur optique peut être estimer avec suffisamment de précision. Le logiciel AODFinder développé à cette fin se comporte bien. Malheureusement le faible échantillon des valeurs de AOD et des mesures des concentrations des PM2.5 ne nous a pas permis de se prononcer sur la possibilité d’utiliser le AOD comme proxy des PM2.5 et ainsi sur la possibilité de raffiner le monitoring des microparticules à l’échelle locale.
40

Détection des mauvaises herbes dans les cultures du bleuets nains

Sirois, Charles January 2020 (has links) (PDF)
No description available.

Page generated in 0.0602 seconds