• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • Tagged with
  • 15
  • 15
  • 7
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Discriminative object categorization with external semantic knowledge

Hwang, Sung Ju 25 September 2013 (has links)
Visual object category recognition is one of the most challenging problems in computer vision. Even assuming that we can obtain a near-perfect instance level representation with the advances in visual input devices and low-level vision techniques, object categorization still remains as a difficult problem because it requires drawing boundaries between instances in a continuous world, where the boundaries are solely defined by human conceptualization. Object categorization is essentially a perceptual process that takes place in a human-defined semantic space. In this semantic space, the categories reside not in isolation, but in relation to others. Some categories are similar, grouped, or co-occur, and some are not. However, despite this semantic nature of object categorization, most of the today's automatic visual category recognition systems rely only on the category labels for training discriminative recognition with statistical machine learning techniques. In many cases, this could result in the recognition model being misled into learning incorrect associations between visual features and the semantic labels, from essentially overfitting to training set biases. This limits the model's prediction power when new test instances are given. Using semantic knowledge has great potential to benefit object category recognition. First, semantic knowledge could guide the training model to learn a correct association between visual features and the categories. Second, semantics provide much richer information beyond the membership information given by the labels, in the form of inter-category and category-attribute distances, relations, and structures. Finally, the semantic knowledge scales well as the relations between categories become larger with an increasing number of categories. My goal in this thesis is to learn discriminative models for categorization that leverage semantic knowledge for object recognition, with a special focus on the semantic relationships among different categories and concepts. To this end, I explore three semantic sources, namely attributes, taxonomies, and analogies, and I show how to incorporate them into the original discriminative model as a form of structural regularization. In particular, for each form of semantic knowledge I present a feature learning approach that defines a semantic embedding to support the object categorization task. The regularization penalizes the models that deviate from the known structures according to the semantic knowledge provided. The first semantic source I explore is attributes, which are human-describable semantic characteristics of an instance. While the existing work treated them as mid-level features which did not introduce new information, I focus on their potential as a means to better guide the learning of object categories, by enforcing the object category classifiers to share features with attribute classifiers, in a multitask feature learning framework. This approach essentially discovers the common low-dimensional features that support predictions in both semantic spaces. Then, I move on to the semantic taxonomy, which is another valuable source of semantic knowledge. The merging and splitting criteria for the categories on a taxonomy are human-defined, and I aim to exploit this implicit semantic knowledge. Specifically, I propose a tree of metrics (ToM) that learns metrics that capture granularity-specific similarities at different nodes of a given semantic taxonomy, and uses a regularizer to isolate granularity-specific disjoint features. This approach captures the intuition that the features used for the discrimination of the parent class should be different from the features used for the children classes. Such learned metrics can be used for hierarchical classification. The use of a single taxonomy can be limited in that its structure is not optimal for hierarchical classification, and there may exist no single optimal semantic taxonomy that perfectly aligns with visual distributions. Thus, I next propose a way to overcome this limitation by leveraging multiple taxonomies as semantic sources to exploit, and combine the acquired complementary information across multiple semantic views and granularities. This allows us, for example, to synthesize semantics from both 'Biological', and 'Appearance'-based taxonomies when learning the visual features. Finally, as a further exploration of more complex semantic relations different from the previous two pairwise similarity-based models, I exploit analogies, which encode the relational similarities between two related pairs of categories. Specifically, I use analogies to regularize a discriminatively learned semantic embedding space for categorization, such that the displacements between the two category embeddings in both category pairs of the analogy are enforced to be the same. Such a constraint allows for a more confusing pair of categories to benefit from a clear separation in the matched pair of categories that share the same relation. All of these methods are evaluated on challenging public datasets, and are shown to effectively improve the recognition accuracy over purely discriminative models, while also guiding the recognition to be more semantic to human perception. Further, the applications of the proposed methods are not limited to visual object categorization in computer vision, but they can be applied to any classification problems where there exists some domain knowledge about the relationships or structures between the classes. Possible applications of my methods outside the visual recognition domain include document classification in natural language processing, and gene-based animal or protein classification in computational biology. / text
12

Integrative approaches to single cell RNA sequencing analysis

Johnson, Travis Steele 21 September 2020 (has links)
No description available.
13

Masked Face Analysis via Multitask Deep Learning

Patel, Vatsa Sanjay 18 May 2021 (has links)
No description available.
14

Low-resource suicide ideation and depression detection with multitask learning and large language models

Breau, Pierre-William 08 1900 (has links)
Nous évaluons des méthodes de traitement automatique du langage naturel (TALN) pour la détection d’idées suicidaires, de la dépression et de l’anxiété à partir de publications sur les médias sociaux. Comme les ensembles de données relatifs à la santé mentale sont rares et généralement de petite taille, les méthodes classiques d’apprentissage automatique ont traditionnellement été utilisées dans ce domaine. Nous évaluons l’effet de l’apprentissage multi-tâche sur la détection d’idées suicidaires en utilisant comme tâches auxiliaires des ensembles de données disponibles publiquement pour la détection de la dépression et de l’anxiété, ainsi que la classification d’émotions et du stress. Nous constatons une hausse de la performance de classification pour les tâches de détection d’idées suicidaires, de la dépression et de l’anxiété lorsqu’elles sont entraînées ensemble en raison de similitudes entre les troubles de santé mentale à l’étude. Nous observons que l’utilisation d’ensembles de données publiquement accessibles pour des tâches connexes peut bénéficier à la détection de problèmes de santé mentale. Nous évaluons enfin la performance des modèles ChatGPT et GPT-4 dans des scénarios d’apprentissage zero-shot et few-shot. GPT-4 surpasse toutes les autres méthodes testées pour la détection d’idées suicidaires. De plus, nous observons que ChatGPT bénéficie davantage de l’apprentissage few-shot, car le modèle fournit un haut taux de réponses non concluantes si aucun exemple n’est présenté. Enfin, une analyse des faux négatifs produits par GPT-4 pour la détection d’idées suicidaires conclut qu’ils sont dus à des erreurs d’étiquetage plutôt qu’à des lacunes du modèle. / In this work we explore natural language processing (NLP) methods to suicide ideation, depression, and anxiety detection in social media posts. Since annotated mental health data is scarce and difficult to come by, classical machine learning methods have traditionally been employed on this type of task due to the small size of the datasets. We evaluate the effect of multi-task learning on suicide ideation detection using publicly-available datasets for depression, anxiety, emotion and stress classification as auxiliary tasks. We find that classification performance of suicide ideation, depression, and anxiety is improved when trained together because of the proximity between the mental disorders. We observe that publicly-available datasets for closely-related tasks can benefit the detection of certain mental health conditions. We then perform classification experiments using ChatGPT and GPT-4 using zero-shot and few-shot learning, and find that GPT-4 obtains the best performance of all methods tested for suicide ideation detection. We further observe that ChatGPT benefits the most from few-shot learning as it struggles to give conclusive answers when no examples are provided. Finally, an analysis of false negative results for suicide ideation output by GPT-4 concludes that they are due to labeling errors rather than mistakes from the model.
15

Deep Continual Multimodal Multitask Models for Out-of-Hospital Emergency Medical Call Incidents Triage Support in the Presence of Dataset Shifts

Ferri Borredà, Pablo 28 March 2024 (has links)
[ES] El triaje de los incidentes de urgencias y emergencias extrahospitalarias representa un reto difícil, debido a las limitaciones temporales y a la incertidumbre. Además, errores en este proceso pueden tener graves consecuencias para los pacientes. Por lo tanto, cualquier herramienta o estrategia novedosa que mejore estos procesos ofrece un valor sustancial en términos de atención al paciente y gestión global de los incidentes. La hipótesis en la que se basa esta tesis es que el Aprendizaje Automático, concretamente el Aprendizaje Profundo, puede mejorar estos procesos proporcionando estimaciones de la gravedad de los incidentes, mediante el análisis de millones de datos derivados de llamadas de emergencia de la Comunitat Valenciana (España) que abarcan desde 2009 hasta 2019. Por tanto, esta tesis profundiza en el diseño y desarrollo de modelos basados en Aprendizaje Profundo Multitarea que aprovechan los datos multimodales asociados a eventos de urgencias y emergencias extrahospitalarias. Nuestro objetivo principal era predecir si el incidente suponía una situación de riesgo vital, la demora admisible de la respuesta y si era competencia del sistema de emergencias o de atención primaria. Utilizando datos disponibles entre 2009 y 2012, se observaron mejoras sustanciales en las métricas macro F1, con ganancias del 12.5% para la clasificación de riesgo vital, del 17.5% para la demora en la respuesta y del 5.1% para la clasificación por jurisdicción, en comparación con el protocolo interno de triaje de la Comunidad Valenciana. Sin embargo, los sistemas, los protocolos de triaje y las prácticas operativas evolucionan de forma natural con el tiempo. Los modelos que mostraron un rendimiento excelente con el conjunto de datos inicial de 2009 a 2012 no demostraron la misma eficacia cuando se evaluaron con datos posteriores que abarcaban de 2014 a 2019. Estos últimos habían sufrido modificaciones en comparación con los anteriores, que dieron lugar a variaciones en las distribuciones de probabilidad, caracterizadas e investigadas meticulosamente en esta tesis. Continuando con nuestra investigación, nos centramos en la incorporación de técnicas de Aprendizaje Continuo Profundo en nuestros desarrollos. Gracias a ello, pudimos mitigar sustancialmente los efectos adversos consecuencia de los cambios distribucionales sobre el rendimiento. Los resultados indican que, si bien las fluctuaciones de rendimiento no se eliminan por completo, pueden mantenerse dentro de un rango manejable. En particular, con respecto a la métrica F1, cuando las variaciones distribucionales son ligeras o moderadas, el comportamiento se mantiene estable, sin variar más de un 2.5%. Además, nuestra tesis demuestra la viabilidad de construir herramientas auxiliares que permitan a los operadores interactuar con estos complejos modelos. En consecuencia, sin interrumpir el flujo de trabajo de los profesionales, se hace posible proporcionar retroalimentación mediante predicciones de probabilidad para cada clase de etiqueta de gravedad y tomar las medidas pertinentes. Por último, los resultados de esta tesis tienen implicaciones directas en la gestión de las urgencias y emergencias extrahospitalarias en la Comunidad Valenciana, al integrarse el modelo final resultante en los centros de atención de llamadas. Este modelo utilizará los datos proporcionados por los operadores telefónicos para calcular automáticamente las predicciones de gravedad, que luego se compararán con las generadas por el protocolo de triaje interno. Cualquier disparidad entre estas predicciones desencadenará la derivación del incidente a un coordinador médico, que supervisará su tratamiento. Por lo tanto, nuestra tesis, además de realizar importantes contribuciones al campo de la Investigación en Aprendizaje Automático Biomédico, también conlleva implicaciones sustanciales para mejorar la gestión de las urgencias y emergencias extrahospitalarias en el contexto de la Comunidad Valenciana. / [CA] El triatge dels incidents d'urgències i emergències extrahospitalàries representa un repte difícil, a causa de les limitacions temporals i de la incertesa. A més, els errors en aquest procés poden tindre greus conseqüències per als pacients. Per tant, qualsevol eina o estratègia innovadora que millore aquests processos ofereix un valor substancial en termes d'atenció al pacient i gestió global dels incidents. La hipòtesi en què es basa aquesta tesi és que l'Aprenentatge Automàtic, concretament l'Aprenentatge Profund, pot millorar significativament aquests processos proporcionant estimacions de la gravetat dels incidents, mitjançant l'anàlisi de milions de dades derivades de trucades d'emergència de la Comunitat Valenciana (Espanya) que abasten des de 2009 fins a 2019. Per tant, aquesta tesi aprofundeix en el disseny i desenvolupament de models basats en Aprenentatge Profund Multitasca que aprofiten dades multimodals d'incidents mèdics d'urgències i emergències extrahospitalàries. El nostre objectiu principal era predir si l'incident suposava una situació de risc vital, la demora admissible de la resposta i si era competència del sistema d'emergències o d'atenció primària. Utilitzant dades disponibles entre 2009 i 2012, es van observar millores substancials en les mètriques macro F1, amb guanys del 12.5% per a la classificació de risc vital, del 17.5% per a la demora en la resposta i del 5.1% per a la classificació per jurisdicció, en comparació amb el protocol intern de triatge de la Comunitat Valenciana. Tanmateix, els protocols de triatge i les pràctiques operatives evolucionen de forma natural amb el temps. Els models que van mostrar un rendiment excel·lent amb el conjunt de dades inicial de 2009 a 2012 no van demostrar la mateixa eficàcia quan es van avaluar amb dades posteriors que abastaven de 2014 a 2019. Aquestes últimes havien sofert modificacions en comparació amb les anteriors, que van donar lloc a variacions en les distribucions de probabilitat, caracteritzades i investigades minuciosament en aquesta tesi. Continuant amb la nostra investigació, ens vam centrar en la incorporació de tècniques d'Aprenentatge Continu als nostres desenvolupaments. Gràcies a això, vam poder mitigar substancialment els efectes adversos sobre el rendiment conseqüència dels canvis distribucionals. Els resultats indiquen que, si bé les fluctuacions de rendiment no s'eliminen completament al llarg del temps, poden mantenir-se dins d'un rang manejable. En particular, respecte a la mètrica F1, quan les variacions distribucionals són lleugeres o moderades, el comportament es manté estable, sense variar més d'un 2.5%. A més, la nostra tesi demostra la viabilitat de construir eines auxiliars que permeten als operadors interactuar amb aquests models complexos. En conseqüència, sense interrompre el flux de treball dels professionals, es fa possible proporcionar retroalimentació mitjançant prediccions de probabilitat per a cada classe d'etiqueta de gravetat i prendre les mesures pertinents. Finalment, els resultats d'aquesta tesi tenen implicacions directes en la gestió de les urgències i emergències extrahospitalàries a la Comunitat Valenciana, al integrar-se el model final resultant als centres d'atenció de telefonades. Aquest model utilitzarà les dades proporcionades pels operadors telefònics per calcular automàticament les prediccions de gravetat, que després es compararan amb les generades pel protocol de triatge intern. Qualsevol disparitat entre aquestes prediccions desencadenarà la derivació de l'incident a un coordinador mèdic, que supervisarà el seu tractament. Per tant, és evident que la nostra tesi, a més de realitzar importants contribucions al camp de la Investigació en Aprenentatge Automàtic Biomèdic, també comporta implicacions substancials per a millorar la gestió de les urgències i emergències extrahospitalàries en el context de la Comunitat Valenciana. / [EN] Triage for out-of-hospital emergency incidents represents a tough challenge, primarily due to time constraints and uncertainty. Furthermore, errors in this process can have severe consequences for patients. Therefore, any novel tool or strategy that enhances these processes can offer substantial value in terms of patient care and overall management of out-of-hospital emergency medical incidents. The hypothesis upon which this thesis is based is that Machine Learning, specifically Deep Learning, can improve these processes by providing estimations of the severity of incidents, by analyzing millions of data derived from emergency calls from the Valencian Region (Spain) spanning from 2009 to 2019. Hence, this thesis delves into designing and developing Deep Multitask Learning models that leverage multimodal out-of-hospital emergency medical data. Our primary objective was to predict whether the incident posed a life-threatening situation, the admissible response delay, and whether it fell under the jurisdiction of the emergency system or primary care. Using data available from 2009 to 2012, the results obtained were promising. We observed substantial improvements in macro F1-scores, with gains of 12.5% for life-threatening classification, 17.5% for response delay, and 5.1% for jurisdiction classification, compared to the in-house triage protocol of the Valencian Region. However, systems, dispatch protocols, and operational practices naturally evolve over time. Models that exhibited excellent performance with the initial dataset from 2009 to 2012 did not demonstrate the same efficacy when evaluated on data spanning from 2014 to 2019. This later dataset had undergone modifications compared to the earlier one, which led to dataset shifts, which we have meticulously characterized and investigated in this thesis. Continuing our research, we incorporated Deep Continual Learning techniques in our developments. As a result, we could substantially mitigate the adverse performance effects consequence of dataset shifts. The results indicate that, while performance fluctuations are not completely eliminated, they can be kept within a manageable range. In particular, with respect to the F1-score, when distributional variations fall within the light to moderate range, the performance remains stable, not varying by more than 2.5%. Furthermore, our thesis demonstrates the feasibility of building auxiliary tools that enable dispatchers to interact with these complex deep models. Consequently, without disrupting professionals' workflow, it becomes possible to provide feedback through probability predictions for each severity label class and take appropriate actions based on these predictions. Finally, the outcomes of this thesis hold direct implications for the management of out-of-hospital emergency medical incidents in the Valencian Region. The final model resulting from our research is slated for integration into the emergency medical dispatch centers of the Valencian Region. This model will utilize data provided by dispatchers to automatically compute severity predictions, which will then be compared with those generated by the in-house triage protocol. Any disparities between these predictions will trigger the referral of the incident to a physician coordinator, who will oversee its handling. Therefore, it is evident that our thesis, in addition to making significant contributions to the field of Biomedical Machine Learning Research, also carries substantial implications for enhancing the management of out-of-hospital emergencies in the context of the Valencian Region. / Ferri Borredà, P. (2024). Deep Continual Multimodal Multitask Models for Out-of-Hospital Emergency Medical Call Incidents Triage Support in the Presence of Dataset Shifts [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/203192

Page generated in 0.0882 seconds