Spelling suggestions: "subject:"muncie""
11 |
Funkční analýza fosforylace syntaxinu 16 za použití kvasinkového modelu / Functional analysis of syntaxin 16 phosphorylation using yeast as a modelVolfová, Barbora January 2011 (has links)
4 Abstract Mechanism of fusion of intracellular membranes in eukaryotic cells involves several protein families including soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) proteins and Sec1/Munc-18 related proteins (SM proteins). It is known that the transport is evolutionary conserved from yeast to man. Therefore for facilitating of the research, we can use simple eukaryotes Saccharomyces cerevisiae. Mammalian SNARE protein syntaxin 16 has a yeast homologue Tlg2p which is used in this study as a model for studying affects of phosphorylation to the syntaxin 16 function. Also their binding partners, SM proteins mVps45p (mammalian) and yeast Vps45p are homologous. Phosphorylation of SNARE proteins is known as a possible way of regulation of membrane fusion. Abolishment of one of the putative phosphorylation sites in Tlg2p protein, serine 90 leads to dominant effects on the exocytic and endocytic pathways. The work presented in this study shows some phenotypes of mutants based on this phosphorylation site of protein Tlg2p. Those mutants are S90A (cannot be phosphorylated) and S90D (phosphomimetic - acid carboxyl group mimics phosphate group). It was revealed that the phosphorylation of Tlg2p protein at serine 90 or the mutation Tlg2p-S90D may play some role in protecting Tlg2p...
|
12 |
Analysis of Stretch Reflex Responses in Mice Lacking Munc18-1 in ProprioceptorsMohi, Amr January 2017 (has links)
No description available.
|
13 |
Munc18 function in large dense-core vesicle exocytosis / Munc18 function in large dense-core vesicle exocytosisGulyas-Kovacs, Attila 26 January 2005 (has links)
No description available.
|
14 |
Fluoreszenzmikroskopische Studien an Plasmamembranen zur Untersuchung der molekularen Mechanismen der neuronalen Exocytose / Fluorescence Microscopy Studies of Plasma Membranes to Analyse the Molecular Machinery of Neuronal ExocytosisZilly, Felipe Emilio 06 July 2006 (has links)
No description available.
|
15 |
Sec1p/Munc18 (SM) proteins and their role in regulating secretion in Saccharomyces cerevisiae and Caenorhabditis elegans a comparative approach / Sec1p/Munc18 (SM) proteine und deren Rolle in der Sekretionsregulierung in Saccharomyces cerevisiae und Caenorhabditis elegans -eine vergleichende StudieIraheta, Raul Emilio 20 November 2012 (has links)
No description available.
|
16 |
Fluoreszenzmikroskopische Studien an Plasmamembranen zur Untersuchung der molekularen Mechanismen der neuronalen Exocytose / Fluorescence Microscopy Studies of Plasma Membranes to Analyse the Molecular Machinery of Neuronal ExocytosisZilly, Felipe Emilio 06 July 2006 (has links)
No description available.
|
17 |
Mechanisms of Presynaptic CaV2.2 (N-type) ModulationChan, Allen 22 March 2010 (has links)
Neurotransmitter release at presynaptic terminals is a complex process involving calcium ion influx through voltage-gated calcium channels (CaV). In addition to their role as entry points through which calcium influx may occur, CaV are now understood to be fundamental components of a common release-site complex that is highly adapted for modulation.
Consistent with this model, I investigated mechanisms of modulating a presynaptic calcium channel, CaV2.2, via a heterotrimeric G-protein pathway. Using the patch-clamp technique, I demonstrated in chick dorsal root ganglion (DRG) neurons that the slow kinetics of G-protein inhibition of CaV2.2 via GTPgammaS were limited by the rate of GDP dissociation from the G-protein nucleotide binding site. In addition, I investigated the role of G-protein regulation of CaV2.2 currents evoked by action potential-like stimuli. Here, I characterized an inhibited current that was advanced in time with respect to uninhibited controls. These currents exhibited a shorter latency to current activation and faster deactivation. These findings may have important physiological ramifications on signal transduction and timing.
In addition to G-protein regulation, presynaptic CaV2.2 have been demonstrated to exhibit a resistance to voltage-dependent inactivation (VDI), a property thought to be important in determining channel availability and synaptic excitability. I demonstrated a role for dynamic palmitoylation in conferring resistance to VDI in presynaptic terminals of the chick ciliary ganglion. Using tunicamycin, an inhibitor of palmitoylation, I induced a hyperpolarizing shift in the steady-state-inactivation (SSI) profile of presynaptic CaV2.2.
Finally, I examined the role of a CaV interacting protein, Munc18, as a potential regulator of CaV. I probed for alterations in CaV2.2 function in DRG neurons that had been transfected with Munc18 or Munc18 siRNA. Despite the intimate interaction between Munc18 and CaV2.2, no major effects on the fundamental characteristics of CaV2.2 function were observed. However, a hyperpolarizing shift in the inactivation profile of CaV2.2 was determined in DRG neurons in which Munc18 was knocked down. It is not clear if this was a direct consequence of Munc18 perturbation.
|
18 |
Mechanisms of Presynaptic CaV2.2 (N-type) ModulationChan, Allen 22 March 2010 (has links)
Neurotransmitter release at presynaptic terminals is a complex process involving calcium ion influx through voltage-gated calcium channels (CaV). In addition to their role as entry points through which calcium influx may occur, CaV are now understood to be fundamental components of a common release-site complex that is highly adapted for modulation.
Consistent with this model, I investigated mechanisms of modulating a presynaptic calcium channel, CaV2.2, via a heterotrimeric G-protein pathway. Using the patch-clamp technique, I demonstrated in chick dorsal root ganglion (DRG) neurons that the slow kinetics of G-protein inhibition of CaV2.2 via GTPgammaS were limited by the rate of GDP dissociation from the G-protein nucleotide binding site. In addition, I investigated the role of G-protein regulation of CaV2.2 currents evoked by action potential-like stimuli. Here, I characterized an inhibited current that was advanced in time with respect to uninhibited controls. These currents exhibited a shorter latency to current activation and faster deactivation. These findings may have important physiological ramifications on signal transduction and timing.
In addition to G-protein regulation, presynaptic CaV2.2 have been demonstrated to exhibit a resistance to voltage-dependent inactivation (VDI), a property thought to be important in determining channel availability and synaptic excitability. I demonstrated a role for dynamic palmitoylation in conferring resistance to VDI in presynaptic terminals of the chick ciliary ganglion. Using tunicamycin, an inhibitor of palmitoylation, I induced a hyperpolarizing shift in the steady-state-inactivation (SSI) profile of presynaptic CaV2.2.
Finally, I examined the role of a CaV interacting protein, Munc18, as a potential regulator of CaV. I probed for alterations in CaV2.2 function in DRG neurons that had been transfected with Munc18 or Munc18 siRNA. Despite the intimate interaction between Munc18 and CaV2.2, no major effects on the fundamental characteristics of CaV2.2 function were observed. However, a hyperpolarizing shift in the inactivation profile of CaV2.2 was determined in DRG neurons in which Munc18 was knocked down. It is not clear if this was a direct consequence of Munc18 perturbation.
|
19 |
VPS45p as a Model System for Elucidation of SEC1/MUNC18 Protein Function: A DissertationFurgason, Melonnie Lynn Marie 09 December 2008 (has links)
Vesicular trafficking, the movement of vesicles between organelles and the plasma membrane for secretion, consists of multiple highly regulated processes. Many protein families function as specificity and regulatory determinants to ensure correct vesicle targeting and timing of trafficking events. The SNARE proteins dock and fuse vesicles to their target membranes. Sec1/Munc18 (SM) proteins regulate membrane fusion through interactions with the SNAREs—SM proteins have been shown to act as both inhibitors and stimulators of SNARE assembly and membrane fusion. However, the details of these SM protein functions are not understood.
Constructing a model of SM protein function has been challenging due to the various modes of interactions reported between SM proteins and their SNAREs. SM proteins interact with their cognate SNAREs and SNARE complexes through several distinct modes. The most conserved mode is an interaction with the syntaxin N-peptide; other modes of binding, such as the syntaxin closed conformation, are hypothesized to be specific for specialized cell types. In order to elucidate the general function of SM proteins, I investigated the function of the endosomal SM protein Vps45p by analyzing its interactions with its cognate syntaxin Tlg2p and its role in SNARE assembly.
I had two main hypotheses: that the Tlg2p N-peptide does not solely mediate the interaction between Vps45p and Tlg2p; and that Vps45p functions to stimulate SNARE complex assembly. I systematically mapped the interaction between Vps45p and Tlg2p using various Tlg2p truncations containing the different domains of Tlg2p and discovered a second binding site on Tlg2p that corresponds to the closed conformation. The neuronal SM-syntaxin pair interacts in a similar manner, indicating that this interaction mode is conserved. To characterize the closed conformation binding mode further, and determine its relationship to the N-peptide binding mode, I developed a quantitative fluorescent electrophoretic mobility shift assay. Results indicate that these two sites do not bind simultaneously and that the N-peptide binding modulates the closed conformation affinity. Furthermore, I monitored the effect of Vps45p on SNARE complex assembly using size exclusion chromatography. Under the conditions tested, Vps45p did not appear to stimulate SNARE complex assembly. The work presented here addresses several puzzling issues in the field and significantly contributes to the construction of a new mechanistic model for SM protein function. In this new model, the SM protein is recruited to the membrane by its interaction with the syntaxin N-peptide. The SM protein then binds the syntaxin closed conformation thus inhibiting SNARE complex assembly. Upon dissociation of the SM protein from the closed conformation, an event perhaps regulated by the SM protein, syntaxin opens and interacts with the other SNAREs to form a SNARE complex. Fusion ensues, stimulated by the SM protein.
|
20 |
A Functional Genomics Analysis of Glycine Max Vesicle Membrane Fusion Genes in Relation to Infection by Heterodera GlycineSharma, Keshav 14 August 2015 (has links)
Soybean cyst nematode (SCN), a major pathogen of soybean worldwide, causes huge losses in soybean production. Various approaches including cloning of genes to combat this devastating disease help to better understand the cellular function and immune responses of plants. Membrane fusion genes are the important regulatory parts of vesicular transport system, which works through packaging of intracellular compounds and delivering them to apoplast or nematode feeding sites to induce an incompatible reaction. The incompatible nature of membrane fusion proteins such as SNAP25, Munc18, Syntaxin, Synaptobrevin, NSF, Synaptotagmin and alpha-SNAP are conserved in eukaryotes and regulate the intracellular function to combat abiotic and biotic stress in plants. Overexpression of these genes in G. max [Williams 82(PI518671)] which is a susceptible cultivar of soybean to nematodes resulted in a reduction of the SCN population providing further insights of molecular and genetic approaches to solve the SCN problems in agriculture.
|
Page generated in 0.0384 seconds