• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Resolving Disulfide Bond Patterns in SNAP25B Cysteine-Rich Region using LC Mass Spectrometry

Ogawa, Nozomi 10 July 2012 (has links) (PDF)
A global analysis of the human proteome demonstrates that there are ~5500 tryptic fragments that contain four cysteines in close proximity. Elucidating whether they form disulfide bonds in vivo under different conditions is particularly important because cysteines are known to be a vital cellular redox sensor as well as a catalytic site for important biochemical reactions. However, currently there are no methods that can resolve disulfide patterns in closely-packed cysteine residues from a complex sample. In order to address this problem, we have developed a novel mass-spectrometry-based method to identify the different disulfide bonding patterns possible, using SNAP25B cysteine-rich region as a test case. Unlike traditional proteomics, this method uses non-reduced sample preparation, thus preserving intact disulfide bonds. It relies on collision-induced dissociation (CID) to cause double-backbone and heterolytic disulfide-bond cleavage and compares this to the theoretical MS/MS spectra. CID in an ion trap gives robust detection of double backbone cleavages and heterolytic disulfide-bond cleavages. Here, we report, for the first time, identification of all three disulfide patterns for double-disulfide species of SNAP25B using collision-induced dissociation.
2

Investigation of Snare-Mediated Membrane Fusion Mechanism Using Atomic Force Microscope Spectroscopy

Abdulreda, Midhat H. 11 December 2007 (has links)
Membrane fusion is essential for survival in eukaryotic cells. Many physiological processes such as endocytosis and exocytosis are mediated by membrane fusion, which is driven by highly specialized and conserved family of proteins. Neuronal soluble Nethylmaleimide- sensitive factor attachment protein receptors (SNAREs) mediate vesicle fusion with the plasma membrane during neurotransmitter release; however, the mechanism for SNARE-mediated membrane fusion remains to be established. In the current work, we aimed at investigating this mechanism using atomic force microscope (AFM) spectroscopy. We established an AFM lipid bilayer system, which proved effective in detecting fusion of bilayers and measuring compression forces required to generate fusion. It also revealed that SNARE-mediated membrane fusion proceeds through an intermediate hemifused state. Using this system, we revealed the energy landscape for membrane fusion using a dynamic force approach. We carried out compression force measurements at different compression rates and a significant reduction in the force was observed when SNAREs were present in the bilayers. The results also indicated that a single energy barrier governed membrane fusion in our experimental system. The energy barrier is characterized by its width and height, which determine the slope of the activation potential. With SNAREs in the opposing (trans) bilayers, the width of the barrier increased > 2 fold, which is interpreted as an increase in the compressibility of the membranes and subsequently a greater ease in their deformation and fusion under compression. Moreover, specific perturbations to the SNARE interaction interfered with the observed facilitation of membrane fusion, which indicated the involvement of SNAREs in the observed fusion facilitation and increase in the fusion rate. Furthermore, dissociation kinetics analysis of the SNARE interaction revealed a strong binding force during trans SNARE-complex formation, and a correlation between the strength of the SNARE interaction and the degree of fusion facilitation was established. In conclusion, the present findings provide support for a mechanism for SNAREmediated membrane fusion, where trans-interaction between SNAREs provides close apposition of the membranes and reduces fusion energy requirements by locally destabilizing the bilayers, in which the SNAREs are anchored, through pulling on or tilting of their transmembrane segments.
3

Development of Nanobodies to Image Synaptic Proteins in Super-Resolution Microscopy

Maidorn, Manuel 15 November 2017 (has links)
No description available.
4

A Functional Genomics Analysis of Glycine Max Vesicle Membrane Fusion Genes in Relation to Infection by Heterodera Glycine

Sharma, Keshav 14 August 2015 (has links)
Soybean cyst nematode (SCN), a major pathogen of soybean worldwide, causes huge losses in soybean production. Various approaches including cloning of genes to combat this devastating disease help to better understand the cellular function and immune responses of plants. Membrane fusion genes are the important regulatory parts of vesicular transport system, which works through packaging of intracellular compounds and delivering them to apoplast or nematode feeding sites to induce an incompatible reaction. The incompatible nature of membrane fusion proteins such as SNAP25, Munc18, Syntaxin, Synaptobrevin, NSF, Synaptotagmin and alpha-SNAP are conserved in eukaryotes and regulate the intracellular function to combat abiotic and biotic stress in plants. Overexpression of these genes in G. max [Williams 82(PI518671)] which is a susceptible cultivar of soybean to nematodes resulted in a reduction of the SCN population providing further insights of molecular and genetic approaches to solve the SCN problems in agriculture.

Page generated in 0.0342 seconds