• Refine Query
• Source
• Publication year
• to
• Language
• 6
• 3
• 1
• 1
• Tagged with
• 10
• 10
• 6
• 5
• 4
• 4
• 4
• 4
• 4
• 3
• 2
• 2
• 2
• 2
• 2
• The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

#### Erdős-Deep Families of Arithmetic Progressions

Gaede, Tao 30 August 2022 (has links)
Let $A \subseteq \Z_n$ with $|A| = k$ for some $k \in \Z^+$. We consider the metric space $(\Z_n,\delta)$ in which $\delta$ is the distance metric on $\Z_n$ defined as follows: for every $x,y \in \Z_n$, $\delta(x,y) = |x-y|_n$ where $|z|_n = \min(z,n-z)$ for $z \in \{0,\ldots,n-1\}$. We say that $A$ is \emph{Erd\H{o}s-deep} if, for every $i \in \{1,2,\dots,k-1\}$, there is a positive number $d_i$ satisfying $$|\{\{x,y\} \subseteq A: \delta(x,y)=d_i\}|=i.$$ Erd\H{o}s-deep sets in $\Z_n$ have been previously classified as translates of: $\{0,1,2,4\}$ when $n = 6$; and, modular arithmetic progressions $\{0,g,2g,\cdots,(k-1)g\} \subseteq \Z_n$ for some generator $g$ and size $k$. Erd\H{o}s-deep sets have primarily been considered in metric spaces $(\Z_n,\delta)$ and $(\R^d,\norm{\cdot})$ for $d = 2$, but some exploration for $d > 2$ has been done as well. We introduce the notion of an \emph{Erd\H{o}s-deep family}. Let $\mathcal{F}=\{A_1,A_2,\dots,A_s\}$, where $A_1,\ldots, A_s \subseteq \Z_n$. Then we say $\mathcal{F}$ is Erd\H{o}s-deep if for some $k \in \Z^+$, for every $i \in \{1,2,\dots,k-1\}$ there is exactly one positive number $d_i$ satisfying $$\sum_{j=1}^s |\{\{x,y\} \subseteq A_j: \delta(x,y)=d_i\}|=i,$$ and no such $d_i$ for any $i \ge k$. We provide a complete existence theorem for Erd\H{o}s-deep pairs of arithmetic progressions $A_1,A_2 \subseteq \Z_n$ and also give a conjectured classification for Erd\H{o}s-deep families of three arithmetic progressions. Using an identity on triangular numbers, we show a general construction for larger families whose size $s$ is the square of an integer. This construction suggests the existence of Erd\H{o}s-deep families often relies on such number-theoretic identities. We define an extremal case of the Erd\H{o}s-deep family in $(\Z_n,\delta)$ in which both the distances and multiplicities are in $\{1,\ldots,k-1\}$; such families are called Winograd families. We conjecture that Winograd families of arithmetic progressions do not exist in the metric space $(\Z,|\cdot|)$. Erd\H{o}s-deep sets in $(\Z_n,\delta)$ correspond to a class of interesting musical rhythms. We conclude this work with a variety of musical demonstrations and original compositions using Erd\H{o}s-deep rhythm families as a creative constraint in composing multi-voiced rhythms. / Graduate
2

#### Rythme de parole dans l'interaction langagière : bénéfice d'un entraînement rythmique musical chez l'enfant sourd / Speech rhythm in language interaction : benefit of a musical rhythmic training in deaf children

Hidalgo, Céline 20 December 2018 (has links)
La musique et la parole possèdent toutes deux un degré d’organisation temporelle i.e. de régularité dans le temps. Les stimuli de nature rythmique ont la particularité de pouvoir être anticipés par le cerveau et des études en linguistique et neurosciences ont montré que plus le cerveau est capable d’anticiper les évènements auditifs, meilleure est la qualité du traitement des stimuli. Les enfants sourds, bien que bénéficiant d’un input auditif de plus en plus précis grâce aux implants cochléaires et d’une prise en charge précoce, n’atteignent pas des niveaux de langage homogènes et souffrent de difficultés de perception en milieux bruyants ou lors de conversations. La situation conversationnelle présente un contexte complexe, nécessitant l’activation de la voie audio-motrice pour anticiper et s’adapter aux variations de la parole de son interlocuteur notamment au niveau temporel. Dans ce travail de thèse, nous avons cherché à analyser, grâce à des mesures électrophysiologiques et comportementales, si un entrainement rythmique actif de 30 minutes, pouvait avoir un effet sur les capacités de perception et d’accommodation temporelles de l’enfant sourd dans une tâche de dénomination en alternance avec un partenaire virtuel. Nous avons également testé les capacités rythmiques de ces enfants à différents niveaux de complexités. Les résultats montrent que les enfants sourds souffrent de difficultés à structurer les événements acoustiques selon différent niveaux de hiérarchie mais qu’un entrainement rythmique de 30 minutes versus une stimulation auditive, permet d’améliorer leurs compétences de perception et de production temporelles de la parole dans une situation d’interaction. / Music and speech both possess a certain degree of temporal organization i.e. a certain degree of regularity across time. Studies in linguistics and neuroscience have shown that the brain can extract regularities and use them to anticipate the forthcoming stimuli. It is furthermore established that the better the brain is able to anticipate auditory events, the better the quality of stimulus processing. Deaf children benefit from more and more precise auditory inputs due to advances in cochlear implants development, together with early rehabilitation interventions. However, a great majority of them do not achieve consistent language levels and have strong difficulties in noisy environments or conversations. The conversational situation presents a complex context, requiring the activation of the audio-motor path to anticipate and adapt to the variations of the speech of its interlocutor notably at the temporal level. In this thesis work, we have investigated the temporal perception and accommodation capacities of deaf children in a naming task alternating with a virtual partner, at both behavioral and electrophysiological levels. We have also tested whether an active rhythmic training lasting 30 minutes, could enhance these conversational abilities. Then, we have investigated the rhythmic abilities of these children at different levels complexities. The results show that deaf children suffer from difficulties in structuring acoustic events according to different levels of hierarchy but that a rhythmic training of 30 minutes versus an auditory stimulation, makes it possible to improve their skills of temporal perception and production of speech in a situation of interaction.
3

#### Ambiguidade rítmica: estudo doritmo musical sob a perspectiva de modelos atuais de percepção e cognição / Rhythmic ambiguity: a study of musical rhythm from the perspective of current models of perception and cognition

Bondesan dos Santos, Pedro Paulo Kohler 06 July 2012 (has links)
4

#### Ambiguidade rítmica: estudo doritmo musical sob a perspectiva de modelos atuais de percepção e cognição / Rhythmic ambiguity: a study of musical rhythm from the perspective of current models of perception and cognition

Pedro Paulo Kohler Bondesan dos Santos 06 July 2012 (has links)
5

#### Teaching Creative Rhythmic Activities to Children: A Function of Progressive Education

Koesjan, Barbara Lee 06 1900 (has links)
The purpose of this study is to present a personal interpretation of progressive education and its function in "teaching" primary music. A few supplementary aids are provided to correlate with the Amarillo, Texas, Course of Study for Primary Grades to lend aid and encouragement toward a rhythmic approach to child learning.
6

#### Percepção métrica: estudando a percepção do ritmo musical através de experimentos psicofísicos / Beat Perception: Studying the musical rhythm perception through psychophysical experiments

Santos, Pedro Paulo Köhler Bondesan dos 05 May 2017 (has links)
7

#### Violão velho, Choro novo: processos composicionais de Zé Barbeiro / -

Palopoli, Cibele Odete 11 May 2018 (has links)
8

#### Violão velho, Choro novo: processos composicionais de Zé Barbeiro / -

Cibele Odete Palopoli 11 May 2018 (has links)
9

#### Percepção métrica: estudando a percepção do ritmo musical através de experimentos psicofísicos / Beat Perception: Studying the musical rhythm perception through psychophysical experiments

Pedro Paulo Köhler Bondesan dos Santos 05 May 2017 (has links)
10