1 |
Characterization of the New Neutron Line at CERN-n_TOF and Study of the Neutron-induced Fission of 237Np / Caractérisation de la nouvelle ligne de neutrons à n_TOF-CERN, et étude de la fission induite par neutrons de 237NpChen, Yonghao 08 September 2017 (has links)
L’installation n_TOF au CERN est unesource pulsée de neutrons, unique au monde pour lamesure de données nucléaires sur le spectre enénergie le plus étendu, avec deux lignesactuellement exploitées. Une ligne horizontalealimente l’aire expérimentale 1 (EAR-1) avec unebase de vol de ~185 mètres. La seconde ligne estverticale et alimente l’aire 2 (EAR-2) à ~20 mètresde la cible de productionLa première partie de ce travail de thèse concernela caractérisation du faisceau de neutrons (flux,profil géométrique, spectre en énergie) de lanouvelle ligne EAR-2, particulièrement importantepour la définition des expériences et leur analyse.Une mesure a été réalisée à EAR-2, basée sur desdétecteurs PPAC enregistrant la fission de 235U, àpartir de laquelle nous avons obtenu le profil et leflux sur la gamme en énergie accessible (thermiqueà 200 MeV).La seconde partie de la thèse a pour but l’étudede la fission de 237Np. Cet isotope est abondammentproduit dans les réacteurs nucléaires actuels et estun des constituants des déchets à vie longue. A cetitre on peut le considérer comme une ciblepotentielle pour l’incinération en réacteur rapide.Ceci a motivé des mesures récentes de sa sectionefficace de fission. Cependant des déviationsimportantes sont apparues, en particulier la mesureeffectuée à n_TOF en 2010 est 6% supérieure auxévaluations basées sur les mesures antérieures. Cecia motivé une nouvelle mesure à n_TOF avec uneconfiguration permettant une mesure précise del’efficacité de détection, pour apporter une réponseau problème. Ce travail a permis de mettre enévidence une dépendance de l’efficacité dedétection avec l’élément, résultant des conditions del’électrodéposition. Après application de cettecorrection d’efficacité dans la région 1 à 5 MeV lasection efficace de fission ainsi extraite est 2 à 3%plus petite par rapport à la mesure de 2010,cependant elle reste 3 à 4% plus forte que lesévaluations / The neutron time-of-flight (n_TOF)facility at CERN is a unique worldwide pulsedneutron source to measure the nuclear data over thewidest energy range with two beam lines currentlyexploited. One is horizontal with a ~185 metersflight path, sending neutrons to experimental area-1(EAR-1). The second one is a new line sendingneutrons vertically to experimental area-2 (EAR-2)with a ~20 meters flight path.The first part of this PhD work is dedicated to thecharacterization of the beam (flux, geometricalprofile, energy spectrum) of the new EAR-2 neutronbeam, of the utmost importance for the experimentalproposals and analyses. An experiment was carriedout at EAR-2, based on PPAC detectors looking atfission of 235U, and the beam profile and neutronflux have been obtained for the entire availableenergy range (from thermal to 200 MeV).The second part of the thesis aims to study theneutron-induced fission of 237Np. 237Np isabundantly produced in present nuclear reactor andis one of the major long-lived components ofnuclear waste which can be considered as apotential target of incineration in fast neutronreactors. Consequently its neutron-induced fissioncross section has been measured at differentfacilities. However, significant discrepancies existbetween different experiments. Especially, therecent one performed at n_TOF in 2010 is about 6%higher by comparison to the evaluation data basedon previous experiments. Therefore an experimenthas been performed at n_TOF EAR-1 to measure itsfission cross section, in a configuration allowing anaccurate control of the detection efficiency, aimingto give a definite answer to the puzzle. In this work,we found that the efficiencies for different targetelements are different, even though they havesimilar thickness, reflecting the conditions ofelectrodeposition. After application of thisefficiency correction in the energy range from 1 to 5MeV, the newly extracted fission cross section is 2-3% lower compared with our previous measurementin 2010, however they are 3-4% higher than the
|
2 |
Development of the STEFF detector for the neutron Time Of Flight facility (n TOF), CERNWarren, Stuart January 2017 (has links)
Significant work has been performed on the development of STEFF (SpecTrometer for Exotic Fission Fragments), a 2E2V (2-Energy 2-Velocity) spectrometer built by the University of Manchester Fission Group. The majority of this work was in the development of the time-of-flight systems, in particular the stop detector; with the main goals of improving the timing resolution and the detection effciency of the fission fragments. Further development of the STEFF spectrometer was done to enable 2E2V measurements of the 235U(n,f) reaction with coincident measurements using a white neutron spectra of energies ranging from 10 meV to200 MeV provided by the n TOF (neutron Time Of Flight) facility, CERN. The STEFF spectrometer was successfully operated twice on the Experimental Area-2 high flux pulsed neutron beam line resulting in 2E2V measurements for fission events with neutron energies ranging from 20 meV to 10 MeV. The first experiment received 1.36x10^18 POT (Protons On Target) with stable conditions and the second received 1.53x10^18 POT with stable conditions. The development of the stop detector resulted in a replacement MWPC (Multi-Wire Proportional Counter) detector for the second of the two experiments. This allowed direct comparison for the timing coincidence resolution, sigma_c, between the start and stop detectors and gave sigma_c = 0.81+/-0.08 ns for the prior PPAC (Parallel Plate Avalanche Counter) detector and sigma_c = 0.40 +/- 0.04 ns for the MWPC. The MWPC gave improved the detection efficiency per fission fragment of Eff = 0.67 compared to Eff = 0.43 for the PPAC. The methods and research described in this work also provided alternate stop detector designs with greater performance. This work produced two large data sets from the two successful deployments of the STEFF spectrometer on the n TOF beam line that will be the future work of many nuclear structure scientists to come.
|
3 |
Mesures de sections efficaces de fission induite par neutrons sur des actinides du cycle du thorium à n_TOF.Ferrant, Laure 07 September 2005 (has links) (PDF)
Dans le contexte des études sur les systèmes innovants de production d'énergie, des réacteurs exploitant le combustible thorium sont envisagés. Les sections efficaces de fission induite par neutrons des actinides qui y sont engagés entrent en jeu dans les simulations de scénarios. Pour les alimenter, des bases de données sont produites à partir de résultats expérimentaux et de modèles. Pour certains noyaux, elles présentent des lacunes ou des désaccords. Pour compléter ces bases de données, nous avons construit un dispositif original constitué d'une alternance de PPACs(chambres à avalanches sur plaques parallèles) et des cibles ultra-minces, que nous avons installé auprès de l'installation n_TOF. Nous décrivons les détecteurs, le montage, et le soin apporté à la fabrication et à la caractérisation des cibles. La détection en coïncidence des produits de fission se fait grâce à des mesures de temps très précises et à leur localisation par la méthode de la ligne à retard. Nous avons contribué, au sein de la collaboration n_TOF, à la caractérisation de la nouvelle source intense de neutrons de spallation du CERN, basée sur le temps de vol des neutrons, et nous en décrivons les caractéristiques et les performances. Nous avons pu mener des mesures sur les actinides ^{232}Th, ^{234}U, ^{233}U, ^{237}Np, ^{209}Bi, et ^{nat}Pb relativement aux références ^{235}U et ^{238}U, en utilisant un système d'acquisition innovant. Nous avons pu tirer parti du large domaine d'énergie accessible, de 0,7 eV à 1 GeV, et de l'excellente résolution dans ce domaine. Le traitement des données et l'état d'avancée de l'analyse sont décrits afin d'éclairer les performances et les limites des résultats obtenus.
|
4 |
Development of a detector for the simultaneous measurement and for the study of uranium-233 capture and fission yields at the CERN n_TOF neutron source / Développement d'un détecteur pour la mesure simultanée et l’étude des rendements de capture et de fission de l’uranium-233 auprès de la source de neutrons n_TOF au CERNBacak, Michael 25 October 2019 (has links)
Des perspectives énergétiques sobres en carbone pour atténuer le changement climatique nécessitent le remplacement des combustibles fossiles par des sources produisant peu de CO2, par exemple l’énergie nucléaire. L'une des options discutées par le Forum international Gen-IV pour la prochaine génération de réacteurs nucléaires consiste à utiliser le cycle du thorium. L'isotope fissile 233U est l'un des isotopes les plus importants du cycle du thorium et est directement responsable du bilan neutronique. L'une des particularités de ce noyau est d'avoir une section efficace de capture qui est inférieure d'un ordre de grandeur à celle de fission. Cette circonstance rend très difficile la mesure de sa section efficace de capture, comme l'atteste seulement deux jeux de données à haute résolution disponibles depuis les années 1960. Dans cette thèse, une nouvelle mesure auprès de la source de neutrons n_TOF est décrite utilisant une nouvelle chambre à fission compacte insérée au centre d'un détecteur de rayons gamma, le calorimètre à absorption totale. La chambre à fission permet d’identifier et de soustraire les rayons gamma de la réaction de fission dans le but d’améliorer la précision de la section efficace de capture de 233U. La chambre à fission est conçue dans cet objectif. Son excellente performance est décrite en détail et permet d'extraire des informations sur les rayons gamma de fission. Une discussion détaillée du processus de réduction des données et des éléments clés de l’analyse, est présentée et aboutit au calcul du rapport alpha de 233U, le rapport entre la section efficace de capture et celle de fission. / A low-carbon energy outlook to mitigate the climate change requires the replacement of fossil fuel by sources with low CO2 emissions, like nuclear energy.. One of the options discussed in the Gen-IV International Forum for the the next generation of nuclear reactors is to use the thorium cycle. The fissile isotope 233U is among the most important isotopes in the thorium cycle and directly responsible for the neutron economy. One of the particularities of this nucleus is to have a capture cross section which is one order of magnitude lower than fission, making the measurement of the 233U capture cross section very challenging as indicated by only two high resolution data sets available since the 1960s. In this thesis, a new measurement at the n_TOF neutron source is described employing a novel compact fission chamber inserted in the center of the Total Absorption Calorimeter g-ray detector. The fission chamber allows to tag and subsequently subtract the gamma rays from the fission reaction aiming to improve the accuracy of the 233U capture cross section.The performance of the custom tailored fission chamber is described in detail and allows to extract information about the prompt fission g-rays. A detailed discussion of the data reduction process and the key elements in the analysis is given resulting in the calculation of the 233U-alpha-ratio, the ratio between the capture and fission cross-section.
|
5 |
Studies of Accelerator-Driven Systems for Transmutation of Nuclear Waste / Studier av acceleratordrivna system för transmutation av kärnavfallDahlfors, Marcus January 2006 (has links)
<p>Accelerator-driven systems for transmutation of nuclear waste have been suggested as a means for dealing with spent fuel components that pose potential radiological hazard for long periods of time. While not entirely removing the need for underground waste repositories, this nuclear waste incineration technology provides a viable method for reducing both waste volumes and storage times. Potentially, the time spans could be diminished from hundreds of thousand years to merely 1.000 years or even less. A central aspect for accelerator-driven systems design is the prediction of safety parameters and fuel economy. The simulations performed rely heavily on nuclear data and especially on the precision of the neutron cross section representations of essential nuclides over a wide energy range, from the thermal to the fast energy regime. In combination with a more demanding neutron flux distribution as compared with ordinary light-water reactors, the expanded nuclear data energy regime makes exploration of the cross section sensitivity for simulations of accelerator-driven systems a necessity. This fact was observed throughout the work and a significant portion of the study is devoted to investigations of nuclear data related effects. The computer code package EA-MC, based on 3-D Monte Carlo techniques, is the main computational tool employed for the analyses presented. Directly related to the development of the code is the extensive IAEA ADS Benchmark 3.2, and an account of the results of the benchmark exercises as implemented with EA-MC is given. CERN's Energy Amplifier prototype is studied from the perspectives of neutron source types, nuclear data sensitivity and transmutation. The commissioning of the n_TOF experiment, which is a neutron cross section measurement project at CERN, is also described.</p>
|
6 |
Studies of Accelerator-Driven Systems for Transmutation of Nuclear Waste / Studier av acceleratordrivna system för transmutation av kärnavfallDahlfors, Marcus January 2006 (has links)
Accelerator-driven systems for transmutation of nuclear waste have been suggested as a means for dealing with spent fuel components that pose potential radiological hazard for long periods of time. While not entirely removing the need for underground waste repositories, this nuclear waste incineration technology provides a viable method for reducing both waste volumes and storage times. Potentially, the time spans could be diminished from hundreds of thousand years to merely 1.000 years or even less. A central aspect for accelerator-driven systems design is the prediction of safety parameters and fuel economy. The simulations performed rely heavily on nuclear data and especially on the precision of the neutron cross section representations of essential nuclides over a wide energy range, from the thermal to the fast energy regime. In combination with a more demanding neutron flux distribution as compared with ordinary light-water reactors, the expanded nuclear data energy regime makes exploration of the cross section sensitivity for simulations of accelerator-driven systems a necessity. This fact was observed throughout the work and a significant portion of the study is devoted to investigations of nuclear data related effects. The computer code package EA-MC, based on 3-D Monte Carlo techniques, is the main computational tool employed for the analyses presented. Directly related to the development of the code is the extensive IAEA ADS Benchmark 3.2, and an account of the results of the benchmark exercises as implemented with EA-MC is given. CERN's Energy Amplifier prototype is studied from the perspectives of neutron source types, nuclear data sensitivity and transmutation. The commissioning of the n_TOF experiment, which is a neutron cross section measurement project at CERN, is also described.
|
Page generated in 0.0291 seconds