• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 2
  • Tagged with
  • 14
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exact L-nearest neighbor search in high dimensions Exakte L-nächster-Nachbar-Suche in hohen Dimensionen /

Heinrich-Litan, Laura. January 2002 (has links)
Berlin, Freie University, Diss., 2002. / Dateiformat: zip, Dateien im PDF-Format.
2

Similarity search in high-dimensional vector spaces /

Weber, Roger, Weber, Roger. January 2000 (has links)
Diss. no. 13974 techn. sc. SFIT Zurich. / Im Buchh.: Berlin : Akademische Verlagsgesellschaft Aka ; Amsterdam : IOS Press. Literaturverz.
3

On the risk of the nearest neighbor rules

Rizk, Mohamed Mahmoud. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--Kiel.
4

NMR-Spektroskopie und Mustererkennungsverfahren für die klinische Diagnose /

Beckonert, Olaf. January 2001 (has links)
Bremen, Universität, Thesis (doctoral), 2000.
5

Integrative Auswertung von Farbe und Textur

Palm, Christoph. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2003--Aachen.
6

Kombination von terrestrischen Aufnahmen und Fernerkundungsdaten mit Hilfe der kNN-Methode zur Klassifizierung und Kartierung von Wäldern

Stümer, Wolfgang. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2004--Dresden.
7

Strategien zur Datenfusion beim Maschinellen Lernen

Schwalbe, Karsten, Groh, Alexander, Hertwig, Frank, Scheunert, Ulrich 25 November 2019 (has links)
Smarte Prüfsysteme werden ein Schlüsselbaustein zur Qualitätssicherung in der industriellen Fertigung und Produktion sein. Insbesondere trifft dies auf komplexe Prüf- und Bewertungsprozesse zu. In den letzten Jahren haben sich hierfür lernbasierte Verfahren als besonders vielversprechend herauskristallisiert. Ihr Einsatz geht in der Regel mit erheblichen Performanceverbesserungen gegenüber konventionellen, regel- bzw. geometriebasierten Methoden einher. Der Black-Box-Charakter dieser Algorithmen führt jedoch dazu, dass die Interpretationen der berechneten Prognosegüten kritisch zu hinterfragen sind. Das Vertrauen in die Ergebnisse von Algorithmen, die auf maschinellem Lernen basieren, kann erhöht werden, wenn verschiedene, voneinander unabhängige Verfahren zum Einsatz kommen. Hierbei sind Datenfusionsstrategien anzuwenden, um die Resultate der verschiedenen Methoden zu einem Endergebnis zusammenzufassen. Im Konferenzbeitrag werden, aufbauend auf einer kurzen Vorstellung wichtiger Ansätze zur Objektklassifikation, entsprechende Fusionsstrategien präsentiert und an einem Fallbeispiel evaluiert. Im Anschluss wird auf Basis der Ergebnisse das Potential der Datenfusion in Bezug auf das Maschinelle Lernen erörtert.
8

Neue Indexingverfahren für die Ähnlichkeitssuche in metrischen Räumen über großen Datenmengen / New indexing techniques for similarity search in metric spaces

Guhlemann, Steffen 06 July 2016 (has links) (PDF)
Ein zunehmend wichtiges Thema in der Informatik ist der Umgang mit Ähnlichkeit in einer großen Anzahl unterschiedlicher Domänen. Derzeit existiert keine universell verwendbare Infrastruktur für die Ähnlichkeitssuche in allgemeinen metrischen Räumen. Ziel der Arbeit ist es, die Grundlage für eine derartige Infrastruktur zu legen, die in klassische Datenbankmanagementsysteme integriert werden könnte. Im Rahmen einer Analyse des State of the Art wird der M-Baum als am besten geeignete Basisstruktur identifiziert. Dieser wird anschließend zum EM-Baum erweitert, wobei strukturelle Kompatibilität mit dem M-Baum erhalten wird. Die Abfragealgorithmen werden im Hinblick auf eine Minimierung notwendiger Distanzberechnungen optimiert. Aufbauend auf einer mathematischen Analyse der Beziehung zwischen Baumstruktur und Abfrageaufwand werden Freiheitsgrade in Baumänderungsalgorithmen genutzt, um Bäume so zu konstruieren, dass Ähnlichkeitsanfragen mit einer minimalen Anzahl an Anfrageoperationen beantwortet werden können. / A topic of growing importance in computer science is the handling of similarity in multiple heterogenous domains. Currently there is no common infrastructure to support this for the general metric space. The goal of this work is lay the foundation for such an infrastructure, which could be integrated into classical data base management systems. After some analysis of the state of the art the M-Tree is identified as most suitable base and enhanced in multiple ways to the EM-Tree retaining structural compatibility. The query algorithms are optimized to reduce the number of necessary distance calculations. On the basis of a mathematical analysis of the relation between the tree structure and the query performance degrees of freedom in the tree edit algorithms are used to build trees optimized for answering similarity queries using a minimal number of distance calculations.
9

Kombination von terrestrischen Aufnahmen und Fernerkundungsdaten mit Hilfe der kNN-Methode zur Klassifizierung und Kartierung von Wäldern / Combination of field data and remote sensing data with the knn-method (k-nearest neighbors method) for classification and mapping of forests

Stümer, Wolfgang 30 August 2004 (has links) (PDF)
Bezüglich des Waldes hat sich in den letzten Jahren seitens der Politik und Wirtschaft ein steigender Informationsbedarf entwickelt. Zur Bereitstellung dieses Bedarfes stellt die Fernerkundung ein wichtiges Hilfsmittel dar, mit dem sich flächendeckende Datengrundlagen erstellen lassen. Die k-nächsten-Nachbarn-Methode (kNN-Methode), die terrestrische Aufnahmen mit Fernerkundungsdaten kombiniert, stellt eine Möglichkeit dar, diese Datengrundlage mit Hilfe der Fernerkundung zu verwirklichen. Deshalb beschäftigt sich die vorliegende Dissertation eingehend mit der kNN-Methode. An Hand der zwei Merkmale Grundfläche (metrische Daten) und Totholz (kategoriale Daten) wurden umfangreiche Berechnungen durchgeführt, wobei verschiedenste Variationen der kNN-Methode berücksichtigt wurden. Diese Variationen umfassen verschiedenste Einstellungen der Distanzfunktion, der Wichtungsfunktion und der Anzahl k-nächsten Nachbarn. Als Fernerkundungsdatenquellen kamen Landsat- und Hyperspektraldaten zum Einsatz, die sich sowohl von ihrer spektralen wie auch ihrer räumlichen Auflösung unterscheiden. Mit Hilfe von Landsat-Szenen eines Gebietes von verschiedenen Zeitpunkten wurde außerdem der multitemporale Ansatz berücksichtigt. Die terrestrische Datengrundlage setzt sich aus Feldaufnahmen mit verschiedenen Aufnahmedesigns zusammen, wobei ein wichtiges Kriterium die gleichmäßige Verteilung von Merkmalswerten (z.B. Grundflächenwerten) über den Merkmalsraum darstellt. Für die Durchführung der Berechnungen wurde ein Programm mit Visual Basic programmiert, welches mit der Integrierung aller Funktionen auf der Programmoberfläche eine benutzerfreundliche Bedienung ermöglicht. Die pixelweise Ausgabe der Ergebnisse mündete in detaillierte Karten und die Verifizierung der Ergebnisse wurde mit Hilfe des prozentualen Root Mean Square Error und der Bootstrap-Methode durchgeführt. Die erzielten Genauigkeiten für das Merkmal Grundfläche liegen zwischen 35 % und 67 % (Landsat) bzw. zwischen 65 % und 67 % (HyMapTM). Für das Merkmal Totholz liegen die Übereinstimmungen zwischen den kNN-Schätzern und den Referenzwerten zwischen 60,0 % und 73,3 % (Landsat) und zwischen 60,0 % und 63,3 % (HyMapTM). Mit den erreichten Genauigkeiten bietet sich die kNN-Methode für die Klassifizierung von Beständen bzw. für die Integrierung in Klassifizierungsverfahren an. / Mapping forest variables and associated characteristics is fundamental for forest planning and management. The following work describes the k-nearest neighbors (kNN) method for improving estimations and to produce maps for the attributes basal area (metric data) and deadwood (categorical data). Several variations within the kNN-method were tested, including: distance metric, weighting function and number of neighbors. As sources of remote sensing Landsat TM satellite images and hyper spectral data were used, which differ both from their spectral as well as their spatial resolutions. Two Landsat scenes from the same area acquired September 1999 and 2000 regard multiple approaches. The field data for the kNN- method comprise tree field measurements which were collected from the test site Tharandter Wald (Germany). The three field data collections are characterized by three different designs. For the kNN calculation a program with integration all kNN functions were developed. The relative root mean square errors (RMSE) and the Bootstrap method were evaluated in order to find optimal parameters. The estimation accuracy for the attribute basal area is between 35 % and 67 % (Landsat) and 65 % and 67 % (HyMapTM). For the attribute deadwood is the accuracy between 60 % and 73 % (Landsat) and 60 % and 63 % (HyMapTM). Recommendations for applying the kNN method for mapping and regional estimation are provided.
10

Kombination von terrestrischen Aufnahmen und Fernerkundungsdaten mit Hilfe der kNN-Methode zur Klassifizierung und Kartierung von Wäldern

Stümer, Wolfgang 24 August 2004 (has links)
Bezüglich des Waldes hat sich in den letzten Jahren seitens der Politik und Wirtschaft ein steigender Informationsbedarf entwickelt. Zur Bereitstellung dieses Bedarfes stellt die Fernerkundung ein wichtiges Hilfsmittel dar, mit dem sich flächendeckende Datengrundlagen erstellen lassen. Die k-nächsten-Nachbarn-Methode (kNN-Methode), die terrestrische Aufnahmen mit Fernerkundungsdaten kombiniert, stellt eine Möglichkeit dar, diese Datengrundlage mit Hilfe der Fernerkundung zu verwirklichen. Deshalb beschäftigt sich die vorliegende Dissertation eingehend mit der kNN-Methode. An Hand der zwei Merkmale Grundfläche (metrische Daten) und Totholz (kategoriale Daten) wurden umfangreiche Berechnungen durchgeführt, wobei verschiedenste Variationen der kNN-Methode berücksichtigt wurden. Diese Variationen umfassen verschiedenste Einstellungen der Distanzfunktion, der Wichtungsfunktion und der Anzahl k-nächsten Nachbarn. Als Fernerkundungsdatenquellen kamen Landsat- und Hyperspektraldaten zum Einsatz, die sich sowohl von ihrer spektralen wie auch ihrer räumlichen Auflösung unterscheiden. Mit Hilfe von Landsat-Szenen eines Gebietes von verschiedenen Zeitpunkten wurde außerdem der multitemporale Ansatz berücksichtigt. Die terrestrische Datengrundlage setzt sich aus Feldaufnahmen mit verschiedenen Aufnahmedesigns zusammen, wobei ein wichtiges Kriterium die gleichmäßige Verteilung von Merkmalswerten (z.B. Grundflächenwerten) über den Merkmalsraum darstellt. Für die Durchführung der Berechnungen wurde ein Programm mit Visual Basic programmiert, welches mit der Integrierung aller Funktionen auf der Programmoberfläche eine benutzerfreundliche Bedienung ermöglicht. Die pixelweise Ausgabe der Ergebnisse mündete in detaillierte Karten und die Verifizierung der Ergebnisse wurde mit Hilfe des prozentualen Root Mean Square Error und der Bootstrap-Methode durchgeführt. Die erzielten Genauigkeiten für das Merkmal Grundfläche liegen zwischen 35 % und 67 % (Landsat) bzw. zwischen 65 % und 67 % (HyMapTM). Für das Merkmal Totholz liegen die Übereinstimmungen zwischen den kNN-Schätzern und den Referenzwerten zwischen 60,0 % und 73,3 % (Landsat) und zwischen 60,0 % und 63,3 % (HyMapTM). Mit den erreichten Genauigkeiten bietet sich die kNN-Methode für die Klassifizierung von Beständen bzw. für die Integrierung in Klassifizierungsverfahren an. / Mapping forest variables and associated characteristics is fundamental for forest planning and management. The following work describes the k-nearest neighbors (kNN) method for improving estimations and to produce maps for the attributes basal area (metric data) and deadwood (categorical data). Several variations within the kNN-method were tested, including: distance metric, weighting function and number of neighbors. As sources of remote sensing Landsat TM satellite images and hyper spectral data were used, which differ both from their spectral as well as their spatial resolutions. Two Landsat scenes from the same area acquired September 1999 and 2000 regard multiple approaches. The field data for the kNN- method comprise tree field measurements which were collected from the test site Tharandter Wald (Germany). The three field data collections are characterized by three different designs. For the kNN calculation a program with integration all kNN functions were developed. The relative root mean square errors (RMSE) and the Bootstrap method were evaluated in order to find optimal parameters. The estimation accuracy for the attribute basal area is between 35 % and 67 % (Landsat) and 65 % and 67 % (HyMapTM). For the attribute deadwood is the accuracy between 60 % and 73 % (Landsat) and 60 % and 63 % (HyMapTM). Recommendations for applying the kNN method for mapping and regional estimation are provided.

Page generated in 0.0242 seconds