Spelling suggestions: "subject:"sacre"" "subject:"nacer""
1 |
A Preliminary Study On The Interfacial Strength Of Red AbaloneAlghamdi, Saleh Jaman 01 January 2016 (has links)
Nacre is a hierarchical material found within the tough shells of red abalone. Despite being composed of calcium carbonate, nacre exhibits remarkable mechanical properties resulting from the nanoscale brick-and-mortar structure made from aragonite polygons. The objective of this research is to elucidate the toughening mechanisms associated with the interfacial resistance of red abalone. This was achieved by studying the mechanical behavior of dry nacre under pure shear and tension, and characterizing the associated fracture mechanisms using optical and scanning electron microscopes. Mathematical modeling was applied to further quantify the contribution of protein chains, nano-asperities and shear pillars to interfacial strengths. Preliminary conceptual models were proposed to elucidate the toughening mechanisms of polymorphic aragonite structures in red abalone. The findings can extend our understanding of the mechanical behavior of natural materials and promote the research and development of high performance bioinspired materials.
|
2 |
Deformation Mechanisms in Bioinspired Multilayered MaterialsAskarinejad, Sina 12 September 2013 (has links)
"Learning lessons from nature is the key element in the design of tough and light composites."
|
3 |
Matériaux bioinspirés : Optimisation du comportement mécanique en utilisant la méthode des éléments discrets / Bioinspired materials : Optimization of the mechanical behavior using Discrete Element MethodRadi, Kaoutar 12 November 2019 (has links)
Les matériaux naturels tels que l'os et la nacre d’ormeau sont constitués de blocs de construction relativement faibles et présentent pourtant souvent des combinaisons remarquables de rigidité, de résistance à la rupture et de ténacité. Ces performances sont dues en grande partie à leurs architectures de brique et de mortier. De nombreux efforts sont consacrés à la duplication de ces principes dans les matériaux synthétiques. Toutefois, les progrès sont en grande partie basés sur des approches empiriques, qui prennent beaucoup de temps et ne garantissent pas la réalisation optimale.La modélisation est une alternative attrayante pour guider la conception et les voies de traitement de ces matériaux. Dans ce travail, nous développons un modèle numérique basé sur la méthode des éléments discrets (DEM) pour comprendre les mécanismes de renforcement et optimiser les propriétés mécaniques des matériaux de type nacre en fonction de leurs paramètres microstructurales. Le modèle suit l’évolution de la fissure, prend en compte de différents mécanismes de renforcement et évalue quantitativement la rigidité, la résistance à la rupture et la ténacité. Une approche intéressante, basée sur l'imagerie EBSD, est présentée pour modéliser le matériau réel et ses différentes variations microstructurales. Les résultats sont ensuite combinés pour fournir des directives de conception pour les composites synthétiques de type brique et mortier comprenant uniquement des constituants fragiles. / Natural materials such as bone and the nacre of some seashells are made of relatively weak building blocks and yet often exhibit remarkable combinations of stiffness, strength, and toughness. Such performances are due in large part to their brick and mortar architectures. Many efforts are devoted to translate these design principles into synthetic materials. However, much of the progress is based on trial-and-error approaches, which are time consuming and do not guarantee that an optimum is achieved.Modeling is an appealing alternative to guide the design and processing routes of such materials. In this work, we develop a numerical model based on Discrete Element Method (DEM) to understand the reinforcement mechanisms and optimize the mechanical properties of nacre-like materials based on their microstructural parameters. The model follows the crack propagation, accounts for different reinforcement mechanisms, and quantitatively assess stiffness, strength, and toughness. An interesting approach, based on EBSD imaging, is presented to model the real material and its different microstructural variations. Results are then combined to provide design guidelines for synthetic brick-and-mortar composites comprising with only brittle constituents.
|
4 |
Tests des composés de nacre sur l'activité des ostéoblastes et leur identification / Testing of nacre compounds on osteoblast activity and their identificationZhang, Ganggang 29 June 2017 (has links)
Avec de nombreuses qualités exceptionnelles (biocompatible et ostéogénique), la nacre représente un biomatériau naturel comme substitut osseux. Mais les composés ostéogéniques dans la nacre ne sont pas encore connus. Nos travaux visent à l’identification des composés ostéogéniques de la nacre. L’ESM (éthanol soluble matrix) est un extrait de la nacre qui est démontré ostéogénique. A partir d’ESM, nous avons essayé plusieurs approches pour cibler et identifier ces composés. Grâce au couplage des cellules MC3T3-E1 et d’ostéoblastes humains arthrosiques, nous avons démontré que la partie cationique d’ESM est ostéogénique, sans interaction avec la partie anionique. Le calcium joue un rôle dans l’activité ostéogénique d’ESM. Ensuite, nous avons créé une lignée cellulaire exprimant de manière stable un plasmide contenant un gène rapporteur ostéogénique (ATDC5 pMetLuc2 ColX promoteur). Grâce à cette lignée, nous avons découvert que les lipides et les sucres présents dans l’ESM ont un effet ostéogénique. Les peptides précipités par TCA sont aussi démontrés ostéogéniques, et ont conduit à leur identification partielle par LC-MS. Ces résultats nous permettent d’avancer plus loin et plus rapidement vers l’identification des composés ostéogéniques de la nacre et vers les applications de la nacre en orthopédie clinique / With many exceptional qualities (biocompatible and osteogenic), nacre represents a natural biomaterial as a bone substitute. However, the osteogenic compounds in nacre are not yet known. Our work aims at the identification of the osteogenic compounds in nacre. The ESM (soluble ethanol matrix) is an extract of nacre that is shown to be osteogenic. From the ESM, we have tried several approaches to target and identify these compounds. Thanks to the coupling of MC3T3-E1 cells and the human osteoarthritis osteoblasts, we demonstrated that the cationic part of the ESM is osteogenic, without interaction with the anionic part. Calcium plays a role in the osteogenic activity of the ESM. Then, we created a cell line stably expressing a plasmid containing an osteogenic reporter gene (ATDC5 pMetLuc2 ColX promoter). Thanks to this cell line, we found out that the lipids and sugars in the ESM have an osteogenic effect. The peptides precipitated by TCA are also demonstrated to be osteogenic, which have led to their partial identification by LC-MS. These results allow us to move farther and faster towards the identification of osteogenic compounds in nacre and the applications of nacre in clinical orthopaedics
|
5 |
Elaboration and characterization of mechanical properties of ceramic composites with controlled architecture / Elaboration et caracterisation des propriétés mécaniques de composites céramiques à architecture contrôléeMarcinkowska, Malgorzata 20 March 2018 (has links)
L'objectif de cette thèse était de développer et de caractériser la microstructure et les propriétés mécaniques des céramiques bio-inspirées. L'alumine inspirée par la nacre fabriquée par texturation à la glace (freeze-casting), précédemment développée dans le cadre de la thèse de F. Bouville, a été choisie comme matériau de référence. La simplification et le changement d’échelle du procédé d’élaboration des matériaux ont été étudiés. Le procédé sophistiqué de freeze-casting a été remplacé par le pressage uniaxial à cru. Les mesures de diffraction des électrons rétrodiffusés ont confirmé le bon alignement après frittage des plaquettes d'alumine utilisées pour préparation du matériau. Le cycle de frittage assisté par effet de champs a été adapté à de plus grandes quantités de poudre céramique et d'additifs organiques. La deuxième partie du projet a été consacrée à la modification de l'interphase entre les plaquettes d'alumine, afin d’améliorer les propriétés mécaniques du matériau. Diverses possibilités ont été explorées: ajout de poudre de zircone, dépôt de zircone sur les plaquettes par réaction sol-gel ou substitution de la phase vitreuse par du graphène. Tous les matériaux obtenus ont été caractérisés par flexion quatre points sur des barrettes entaillées. La troisième partie de cette étude a porté sur le développement de composites multicouches métal/céramique, par frittage simultané d'alumine et de titane. L'épaisseur et la composition de la feuille de titane ont été modifiées pour étudier leur influence sur les phénomènes de diffusion lors du frittage. Les composites ont été caractérisés par MEB, EBSD, spectroscopie à rayons X à dispersion d'énergie et tomographie à rayons X au synchrotron. La fabrication simplifiée des matériaux permet de préparer des échantillons de plus grandes dimensions de céramiques inspirées par la nacre, sans passer par une étape de freeze-casting. Cependant, la croissance des grains doit être limitée pour maintenir de bonnes propriétés mécaniques. La modification de l'interphase entre les plaquettes d'alumine n'a pas amélioré les propriétés mécaniques des matériaux par rapport au matériau de référence. D'autre part, le dépôt de nano-zircone sur la surface des plaquettes semble prometteur et devrait faire l'objet d'études plus poussées. Dans le cas des composites alumine/titane, les composites architecturées multiéchelles ont été fabriqués de manière assez simple. Cependant, il est crucial d'éviter la fissuration des feuilles de métal afin d’améliorer les propriétés mécaniques. / The goal of this thesis was to develop and characterize the microstructure and the mechanical properties of bioinspired ceramic composites. Nacre-like alumina fabricated by freeze-casting previously developed in Bouville thesis was chosen as a reference material. Simplifying and up-scaling material fabrication was intended. Architectural levels were added to the microstructure to further improve mechanical properties of the material. Sophisticated processing by freeze-casting was substituted by uniaxial pressing. Electron backscatter diffraction observations confirmed the good alignment of alumina platelets used to prepare the material. The field assisted sintering cycle was adapted to greater quantities of ceramic powder and organic additives. The second part of the project was dedicated to the modification of the interphase between alumina platelets. Various possibilities were explored: adding fine zirconia powder, depositing zirconia on the platelets by sol-gel reaction, or substituting the glassy phase by graphene. All obtained materials were characterized by four point bending on notched bars. The third part of this study was focused on the development of multilayered metal/ceramic composites, by simultaneous sintering of alumina and titanium. The titanium foil thickness and composition were varied. The composites were characterized by SEM, EBSD, energy dispersive X-ray spectroscopy and synchrotron X-ray tomography. Detailed microstructural and chemical characterization was performed to understand mechanisms of titanium diffusion into ceramic matrix. Simplified material fabrication allows to prepare larger samples of nacre-like ceramics. However grain growth should be limited to maintain good mechanical properties. Modification of the interphase between alumina platelets did not improve mechanical properties of the materials as compared to the reference material. On the other hand, depositing nano-zirconia on platelets surface seems promising and should be further investigated. In case of alumina/titanium composites, a multiscale architecture composites were process in a rather simple way. However, avoiding metal foil cracking is crucial to improve mechanical properties.
|
6 |
Bulk Ceramic-Based Biologically Inspired Composites: Design, Fabrication and TestingKhan, Shahbaz Mahmood 06 January 2025 (has links)
Strength and toughness are mutually exclusive mechanical properties; an increase in one result in the decline in the other. Accordingly, ceramics with superior strength have a very low toughness; likewise, metals with similar density have relatively lower strength but higher toughness. However, biological systems design lightweight materials, circumventing this limitation of conventional materials, by aggregating various multiscale toughening mechanisms. In challenging habitats, organisms evolve to produce remarkable multifunctional material systems that improve their "fit" and "survivability". Unlike traditional materials, natural materials employ special arrangements of structural elements into cellular, gradient, fibrous, layered, or overlapped "architected composites". These natural material systems are "architected" to delocalize damage and prevent defect coalescence, to avoid catastrophic failure, even though they are mainly composed of brittle building blocks (>90 vol% mineral content). Consequently, the study of natural materials has attracted the attention of scientists as the benchmark for the development of new synthetic materials. With the advent of additive manufacturing technology, the design and assessment of architected composites with bio-inspired motifs have become increasingly feasible. In this dissertation, I use multi-step fabrication methods with additive manufacturing as a key step to produce and study different biologically inspired architectures. With control over the design parameters of the architectural features, an in-depth understanding of the organization is accomplished. The case studies are primarily focused on bulk composite material systems with multiple phases and motifs inspired by various biological material systems. This dissertation aims to reveal the structure-property relationships of these structural motifs and the trade-offs to the mechanical robustness due growth-related constraints.
With the help of stereolithographic additive manufacturing technique and centrifugal infiltration, we propose a bio-inspired method for preparing ceramic-metal composites. The approach allowed for flexible design, scalability, and dimensional control of individual phases. The ceramic-metal composites were fabricated with structures simplified from the mollusk shell architectures, exhibiting specific strength up to 169% higher than the base metal. The crack growth toughness of up to 12.9 MPa m1/2 was recorded, with crack deflection at ceramic-metal interfaces. Additionally, using tomographic analysis we show that the high porosities of 9% and 15% for green and sintered 3D printed parts, if improved, could further enhance the strength and fracture toughness of these composites.
The outer protective layer of a bivalve mollusk exoskeleton, called the prismatic layer, is composed of normally oriented prismatic building blocks separated by soft organic matrix. The growth of the prismatic layer is regulated by the thermodynamic boundary conditions of the habitat and is directed from the exterior to the interior of the shell. A consequence of growth is a graded structure with a fine side (higher grain count with smaller grain size) and a coarse side (higher grain count with smaller grain size), however, the presence of grading results in asymmetry. Using mechanical testing we reveal that the organisms' selection of fine side as the loading face is "not the most optimized arrangement for templating". In fact, opting for the coarse side over the fine side as the loading side simultaneously enhances mutually exclusive properties such as stiffness, strength, and energy absorption. We further show that the curved prism motifs in the proximal parts of the Ostrea edulis shells result in a significant reduction in mechanical robustness due to the growth-related restrictions arising from the simultaneous normal and lateral growth of shells. Moreover, we show that although the addition of a nacre-like backing layer reduces the effects of axial directional asymmetry, the resistance of the prismatic layer to initiate damage in a coarse side-loaded hybrid composite is superior to the fine side-loaded counterpart. This part of the research highlights the need for caution when directly mimicking structural designs found in biological systems. Biological material systems are typically multifunctional, tailored to specific habitats and organism-specific needs, and often constrained by growth requirements and economic limitations.
The shells of the pteropods – pelagic gastropod species, are comprised of helical or as posited by certain researchers "S-shaped" aragonite mineral motifs. These helical motifs are remarkably close packed in an organic matrix without noticeable spaces. We develop a biological process mimicking image processing technique called the "Bottom-up Sectional Morphing" to model perfectly closed packed structures with control over the radius and pitch of the helical motifs. With the developed composites we attempt to characterize the effect of the helix radius of individual motifs on the global mechanical properties. With the help of compressive tests, we characterize the delocalization of load as the radius of the helical motifs is increased. With the help of slab-shaped samples, we study the puncture resistance and interlocking behaviors due to increased helical radius. Using standardized fracture toughness tests, the toughness of the composites is determined. Additionally, the R-curve behaviors as a function of helical radiuses is characterized. On average, the fracture strength of the composite doubled as the radius of the helical motifs increased from 0 mm to 3.9 mm. Remarkably, the fracture toughness of helical composites was as high as 12-times the rule-of-mixtures estimated values. We summarize the extrinsic toughening mechanisms within the composites compared them to the mechanisms reported for helicoidal (twisted plywood) composites. Additional interlocking due to the uneven orientation of major axes in double basket weave pattern helical system are reported. Using explicit finite element simulations, we show that the curved motifs in comparison to normally oriented prisms, can help in developing localized high stress pockets, thus delocalization of damage that can help in increasing energy absorption during the progression of damage.
Also, taking cues from fish scale ultrastructures, we design three-phase ceramic-epoxy-fiber composites. The fish scales feature gradient architectures with varying biomineralization extents from the distal to proximal regions (with respect to the fish body). From exterior to interior the mineralization content reduces, however, the collagen fiber count subsequently increases. To mimic the design approach, we use a 3D printed gradient ceramic lattice embedded in an epoxy matrix and backed using Kevlar fibers. With high-speed impact tests (73.5 ± 2.5 ms-1) we show that, although functionally graded composites (without Kevlar backing) show larger impact signatures compared to the similar density uniform density composites (without Kevlar backing) but absorb 35.7% higher energy during the process. High rebound velocity (22 ± 2.46 m/s) was observed for variable density composites with Kevlar backing. Additionally, using micro computed tomographic analysis of variable density composites with Kevlar backing we demonstrate that pre-stretching of fibers helps in the suppression crack. The results from this study were used in the design of polymer-elastomer composites with functionally graded material and fiber distribution.
Interweaving fibers with hard solid lattices becomes challenging when one of the planar surfaces of the lattice is closed because of the functional grading. To overcome this challenge, I propose a new lattice interweaving method called "Warp-Assisted Binder-Tugging (WABT)", that can interweave the lattice using only one of the planar faces. Using WABT we refine the 3-phase composites design by incorporating strategically placed internal reinforcements. Cured photopolymer thermoset plastics are intrinsically brittle materials with mechanical properties like that of epoxy. Therefore, we choose this material along with urethane elastomer to prepare polymer-elastomer (hard-soft) composites, with and without reinforcements. We demonstrate the efficacy of strategic material distributions using dynamic puncture tests and projectile impact tests. The results show that concentrating brittle plastics towards the loading side improves energy absorption ability by 30.29% and puncture strength by 21.47%. A further 61.76% and 35.12% improvement in the energy absorption and puncture strength is recorded for slabs with backing and reinforcements. We show the response of the as-prepared composites under high speed projectile impact tests with incident projectile speeds of 151.5 ± 2.5 ms-1. The μ-CT characterization of damaged samples revealed the load delocalization and crack suppression behaviors due to the material distributions and reinforcements. / Doctor of Philosophy / It is challenging to develop materials that are strong and tough at the same time. Ceramics, for example, are very strong, but are highly sensitive to the inherent defects and subsequently, upon initiation of damage, fail catastrophically. Metals on the other hand are not as strong as ceramics but require high energy for failure. Biological materials, using ingeniously designed and organized brittle elements can combine strength and toughness into a single system. In this dissertation, I investigated various bioinspired material systems to characterize their structure-property relationships. The analysis of structures inspired by the biological materials provides valuable insights that will potentially benefit the design of new protective systems.
In this dissertation, I fabricate, and study biological designs found in the bivalve mollusk shells, pteropod shells, and fish scales. Using experimental and computational methods the I studied the effects of design parameters on the mechanical robustness of the composites. Contrary to the common belief that biological systems are highly optimized, I show that the biological materials could feature "less-than-perfect" design arrangements. The case studies aim to highlight the mechanisms that help organisms to resist damage and survive in their challenging environments. These case studies allowed us to understand the design strategies as well as limitations that can help us develop mechanically robust materials based on biological materials.
|
7 |
Evolution des biominéralisations nacrées chez les mollusques : caractérisation moléculaire des matrices coquillières du céphalopode nautiloïde Nautilus macromphalus et du bivalve paléohétérodonte Unio pictorumMarie, Benjamin 14 May 2008 (has links) (PDF)
Chez les métazoaires, la coquille des mollusques constitue un objet d'étude de référence pour comprendre les phénomènes de formation des biominéralisations carbonatées. La coquille, sécrétée par l'épithélium minéralisant du manteau, est constituée à plus de 95% de carbonate de calcium - calcite et/ou aragonite, et de moins de 5% d'une matrice organique composée de protéines, de glycoprotéines et de polysaccharides. Cette matrice calcifiante est directement impliquée dans les processus de formation du biominéral. Ce travail de thèse consiste en l'étude de la matrice organique associée à la couche nacrée. Chez les mollusques, la nacre est présente dans les coquilles de certains représentants actuels des bivalves, des gastéropodes, des céphalopodes, mais aussi des monoplacophores. La très grande majorité des données publiées sur les constituants macromoléculaires des matrices associées à la nacre concerne exclusivement les genres Pinctada et Pinna, pour les bivalves, et le genre Haliotis, pour les gastéropodes. Ce travail met en œuvre une approche comparative de ces composés à travers la caractérisation biochimique des matrices de deux nouveaux modèles. Nous considérons que cette approche comparative nous permettra de proposer de nouvelles hypothèses quant aux mécanismes de formation de la nacre, mais également quant à l'évolution de ces constituants organiques au sein des mollusques nacriers. Le premier modèle étudié est le mollusque d'eau douce Unio pictorum, un bivalve à coquille nacro- prismatique très commun des cours d'eau bourguignons. La matrice organique acido-soluble extraite de la couche nacrée présente une activité enzymatique de type anhydrase carbonique, une enzyme essentielle aux processus de calcification, déjà observée par ailleurs chez Pinctada sp.. Des électrophorèses réalisées en conditions dénaturantes sur cette matrice acido-soluble montrent la présence de cinq protéines majoritaires de masses moléculaires apparentes 95, 50, 29, 16 et 12 kDa. L'étude de la glycosylation de ces protéines nous a montré que les protéines de masses moléculaires 95, 50 et 29 kDa, étaient des glycoprotéines fortement glycosylées et que leurs ramifications saccharidiques étaient directement impliquées dans les processus de minéralisation. Notamment, la glycoprotéine de 95 kDa, spécifique de la couche nacrée, porte une quantité remarquable de sucres sulfatés qui sont impliqués dans sa capacité à lier les ions Ca2+ ou à interagir avec la précipitation du CaCO3 in vitro. Des séquences partielles internes ont pu être obtenues pour les différentes protéines de la matrice acido-soluble de la nacre grâce à des analyses par spectrométrie de masse. Le second modèle est le céphalopode Nautilus macromphalus dont la coquille nacro-prismatique est entièrement composée d'aragonite. Des électrophorèses de la matrice acido-soluble ont montré qu'elle est composée de polysaccharides de haut poids moléculaire, de glycoproteines migrant aux alentours de 60-50 kDa et de 3-4 protéines de masses moléculaires apparentes comprises entre 20 et 10 kDa, capables de lier le calcium in vitro. Sur gel d'électrophorèse à deux dimensions, les différents constituants organiques de la matrice acido-soluble migrent soit à des valeurs de pI très acides (inférieur ou égal à 3 unités), soit à des pI très basiques (supérieur à 9), alors que chez les autres mollusques non céphalopodes, les protéines de nacre sont faiblement acides ou neutres. Des séquences partielles de ces protéines ont été obtenues par séquençage de novo à partir de protéines purifiées par électrophorèses 2-D et de matrice complète analysées par spectrométrie de masse après digestion trypsique. Les nouvelles séquences observées présentent des similitudes avec des protéines de nacre décrites chez les bivalves Pteriomorphia, mais aucune homologie n'a pu être détectée avec les protéines décrites chez les gastéropodes. Nous avons également décrit, dans une étude préliminaire, les matrices acido-solubles extraites des coquilles de brachiopodes Rhynchonelliformea. Ce travail montre que, chez ce groupe externe aux mollusques, les mécanismes moléculaires de calcification impliquent également la production d'une matrice calcifiante composée de macromolécules aux propriétés biochimiques diverses.
|
8 |
Retrosynthese von Perlmutt / Retrosynthesis of nacreGehrke, Nicole January 2006 (has links)
In dieser Arbeit ist es gelungen, die Bedeutung physikalisch-chemischer Mechanismen in der Biomineralisation gegenüber der bisher angenommenen Dominanz spezifischer biomolekularer Erkennungsmechanismen aufzuzeigen.
Dazu wurden drei Ansätze verfolgt: Zum einen wurden Studien zur Calciumcarbonatkristallisation durchgeführt. Zum anderen wurde das Biomineral Perlmutt intensiv untersucht. Als drittes wurde ein Modellsystem entwickelt, mit dem künstliches Perlmutt synthetisiert und ein Mechanismus für die Perlmuttmineralisation vorgeschlagen werden konnte.
<br><br>
Im ersten Schritt wurden in einem simplen Kristallisationsansatz komplexe Calciumcarbonatüberstrukturen ohne die Verwendung von Additiven synthetisiert. Es wurde gezeigt, daß diese durch orientierte Anlagerung von Nanopartikeln gebildet werden, bei der dipolare Felder eine wichtige Rolle zu spielen scheinen. Dieser Mechansimus war bislang für Calciumcarbonat unbekannt und ermöglicht die Synthese komplexer Kristallmorphologien, wodurch die Frage aufgeworfen wird, ob er bei der Biomineralbildung von Bedeutung sein kann.
Durch Einsatz minimaler Mengen eines einfachen, synthetischen Additivs bei der Kristallisation wurden zu Überstrukturen angeordnete Aragonitplättchen synthetisiert, die von einer wenige nm dicken Schicht aus amorphen Calciumcarbonat umgeben sind. Eine solche Schicht wurde auch bei den Aragonitplättchen Perlmutts entdeckt (s.u.) und bietet möglicherweise in verschiedenen Systemen eine Erklärung für die Stabilisierung der sonst metastabilen Aragonitphase.
<br><br>
Im zweiten Schritt wurden bei der Untersuchung von natürlichem Perlmutt zwei bislang unbekannte Strukturmerkmale entdeckt: Es gibt Bereiche, die nicht aus den charakteristischen Plättchen bestehen, sondern wesentlich weniger stark mineralisert sind. Die Mineralphase besteht in diesen Bereichen aus Nanopartikeln. Es wurde weiterhin gezeigt, daß die Aragonitplättchen von einer wenige nm dicken Schicht aus amorphem Calciumcarbonat umgeben ist. Die gängigen Modelle der Perlmuttbildung sind mit diesen Beobachtungen nicht zu vereinbaren und somit zu hinterfragen. Dagegen deuten diese Ergebnisse ein Wachstum von Perlmutt über ACC-Nanopartikel an.
<br><br>
Unter der Annahme der Bedeutung physikalisch-chemischer Mechanismen in der Biomineralisation wurde schließlich als dritter Schritt ein Ansatz zur in vitro-Retrosynthese von Biomineralien ausgehend von ihrer unlöslichen Matrix entwickelt.
<br><br>
Mit diesem Ansatz ist es erstmals gelungen, künstliches Perlmutt auf synthetischem Wege herzustellen, das morphologisch nicht vom Original zu unterscheiden ist. Die existierenden Unterschiede konnten zeigen, daß der Mineralisationsprozeß nicht auf ein spezifisches Mikroumgebungssystem beschränkt, sondern "allgemeiner gültig"' sein muß.
<br><br>
Bei der Retrosynthese gibt es zwei Schlüsselfaktoren: Zum einen die demineralisierte unlösliche Perlmuttmatrix als dreidimensionales Gerüst für das künstliche Perlmutt, zum anderen amorphe Precursorpartikel, die die Mineralphase bilden. Es werden keinerlei Proteine oder andere Biomoleküle verwendet.
Dieser Ansatz bietet die Möglichkeit, den Mineralisationsprozeß an einem in vitro-Modellsystem zu verfolgen, was für das in vivo-System, wenn überhaupt, nur unter starken Einschränkungen möglich ist.<br><br>
Es wurde gezeigt, daß das künstliche Perlmutt über die Mesoskalentransformation von ACC-Precursorn innerhalb der Matrix gebildet wird und als möglicher Mechanismus bei der Biomineralisation von natürlichem Perlmutt diskutiert.
Es konnte in der vorliegenden Arbeit konsequent gezeigt werden, daß die Imitation von Biomineralisationsprozessen in in vitro-Ansätzen möglich ist, wobei chemisch-physikalische Parameter dominieren.
<br><br>
In zukünftigen Studien sollten einerseits die mechanischen Eigenschaften des künstlichen Perlmutts untersucht werden, wofür sich in Vorversuchen im Rahmen dieser Arbeit die Nanoindentierung als geeignet herausgestellt hat. Es sollte geprüft werden, ob das hier ermittelte Prinzip zur Mineralisierung in der Materialentwicklung angewendet werden kann.
Andererseits sollte die Retrosynthese auf andere Systeme ausgeweitet und in vivo-Studien durchgeführt werden, um die Gültigkeit der vorgeschlagenen Mechanismen zu überprüfen. / This thesis highlights the importance of physical-chemical mechanisms in biomineralisation and, thus, challenges the widely accepted dominance of specific biomolecular recognition mechanisms.
<br><br>
The work is divided into three parts: the first part addresses the crystallisation of calcium carbonate; the second part focuses on an intensive study of the biomineral, nacre, and, lastly, a retrosynthesis model system is designed and applied to synthesize artificial nacre. A mechanism for nacre mineralisation in nature is proposed.
<br><br>
Initially, complex calcium carbonate superstructures were synthesized in the absence of any additive. These were shown to grow by an oriented attachment mechanism of nanoparticles, presumably under the influence of dipolar fields. This growth mechanism has, to date, not been described for calcium carbonate. This mechanism opens the possibility to synthesize complex crystal morphologies of calcium carbonate and arises the question as to whether it plays a role in the growth of biominerals.
<br><br>
With the presence of small amounts of additives in calcium carbonate crystallisation it was possible to synthesize superstructures of aragonite platelets, each of which surrounded by a layer of amorphous calcium carbonate (ACC). Such ACC layers were also found in natural nacre (see below) and may explain the stabilisation of the metastable calcium carbonate polymorph aragonite.
<br><br>
In the second part of this thesis two unknown features of nacre structures were distinguished: Some areas within the nacre do not consist of the characteristic aragonite platelets but are mineralized only to a low degree. In these areas the mineral phase is clearly composed of nanoparticles. Furthermore, the aragonite platelets of nacre are shown to be surrounded by an ACC layer. Both observations contradict the classical models of nacre growth mechanisms but hint towards a growth via ACC nanoparticles.
<br><br>
Assuming the importance of physical-chemical mechanisms in biomineralisation, an approach for the in vitro retrosynthesis of biominerals was designed. Through this, it was possible, for the first time, to synthesize artificial nacre, which was indistinguishable in morphology from the original. The non-morphological differences between original and synthesized nacre showed that the biological process of mineralization is not limited to one specific microenvironment, but must be more general.
<br><br>
Two key factors are of importance for the retrosynthesis approach: 1) The demineralised nacre matrix, which forms a scaffold for the artificial mineral phase and; 2) amorphous nanoparticles as precursors, which transform into the mineral phase. No proteins or other biomolecules were utilized.
In this way, the biomineralisation process could be followed in an in vitro model, a process, which is hardly possible in such detail under in vivo conditions. This work proves that the artificial nacre grows by a mesoscale transformation of ACC nanoparticles, and discusses this mechanism as a possible growth mechanism of natural nacre. This work consequently shows that it is possible to imitate biomineralisation processes in vitro and that, in–vitro, these processes are driven by physico-chemical parameters.
<br><br>
Future studies will involve investigation of the mechanical properties of the artificial nacre. First experiments indicate, that nanoindentation is hereby suitable. The potential application of the in vitro mineralization mechanism for new material development will be investigated. Furthermore, the retrosynthesis will be applied to other biomineral systems and, subsequently, in vivo studies will be performed so as to investigate the role of the proposed mechanisms for the natural biomineralisation process.
|
9 |
Experiments augmented computational analysis of structural materials: A focus on metallic and biological systemsBollineni, Ravi Kiran 13 March 2025 (has links)
Over the past few decades, the demand for energy-efficient treatment processes to reduce carbon emissions and the need for high performance materials in advanced engineering applications have posed significant challenges for materials scientists. This research first investigates the influence of high magnetic fields during heat treatment an energy efficient alternative to conventional processes on the microstructural evolution and mechanical properties of hypoeutectoid steels. The study demonstrates how magnetic fields affect phase transformations, microstructural features, and mechanical behavior. To establish a robust structure-property relationship and enable microstructural tailoring for targeted mechanical properties, an end-to-end computational framework integrating experimental characterization, physics based finite element simulations, and deep learning techniques is developed. Additionally, a mesoscale finite element model is constructed for fully pearlitic steels to simulate plastic deformation and damage, calibrated and validated using experimental data. A deep learning-based approach is then applied to analyze the structure-property relationships and design pearlite lamellae for optimized mechanical performance. Furthermore, the study extends to bio-inspired materials, investigating Nacre like structures for topology optimization aimed at enhancing mechanical properties and wave filtering capabilities. The dynamic behavior of these metamaterials is examined, revealing how hierarchical design influences their multifunctional properties. The findings of this research contribute to advancing the understanding of magnetic field assisted heat treatment for ferrous alloys, providing a computational framework for mesoscale plastic deformation and damage modeling in metallic systems, and developing methodologies for forward and inverse structural design targeting specific engineering applications. These insights pave the way for optimizing materials to achieve superior performance while promoting sustainable and efficient manufacturing processes. / Doctor of Philosophy / In recent years, the demand for stronger, more durable materials and energy efficient manufacturing processes has grown significantly. This research explores how applying a magnetic field during heat treatment can influence the microstructure and mechanical properties of hypoeutectoid steels, a widely used class of structural materials. The study shows that magnetic fields can alter phase transformations, leading to improved material performance while offering a more energy efficient alternative to traditional heat treatment methods. To better understand and design materials with specific properties, a computational approach combining experiments, simulations, and artificial intelligence is developed. This framework helps analyze the relationship between a material's structure and its mechanical properties, allowing for the design of optimized microstructures with enhanced strength and durability. Additionally, the study investigates Nacre like bioinspired composites that mimic natural structures found in seashells using machine learning techniques to improve their mechanical properties and ability to filter vibrations. By integrating advanced computational tools with experimental data, this research provides new ways to develop high performance materials more efficiently, with potential applications in industries such as aerospace, automotive, and infrastructure.
|
10 |
Deposition of Copper Nanoparticles on 2D Graphene NanoPlatelets via Cementation ProcessDa Fontoura, Luiza 21 March 2017 (has links)
The main goal of this thesis is to deposit metal particles on the surface of 2D nanoplatelets using a controlled cementation process. As a proof of concept, copper (Cu) and Graphene Nanoplatelets (GNP) were chosen as the representative metal and 2D nanoplatelets, respectively. Specific goals of this study include depositing nanometer scale Cu particles on the surface of GNP at a low concentration (approximately 5 vol.%) while maintaining clustering and impurities at a minimum. Parametric studies were done to attain these goals by investigating various metallic reducer types and morphologies, GNP surface activation process, acid volume % and copper (II) sulfate concentrations. Optimal conditions were obtained with Mg ribbon as a reducer, 3 minutes of activation, 1 vol.% of acetic acid and 0.01 M CuSO4. The GNP-Cu powder synthesized in this work is a precursor material to be consolidated via spark plasma sintering (SPS) to make a nacre-like, layered structure for future studies.
|
Page generated in 0.0318 seconds