Spelling suggestions: "subject:"nanoémulsions"" "subject:"nanoemulsion""
1 |
Conception et évaluation de nanoémulsions multiples autoémulsionnables comme vecteurs de molécules d'intérêt thérapeutique. / Design and characterization of a self multiple nanoemulsion as drug vectorSigward, Estelle 25 June 2014 (has links)
L'objectif a été de formuler des émulsions multiples Hydrophile/Lipophile/Hydrophile de taille nanométrique par autoémulsification, d'évaluer leurs cytotoxicités et le taux d'encapsulation. Trois formules ont été développées. La phase lipophile est composée de : triglycéride à chaine moyenne et de deux agents de surface : formules (a) Polysorbate 85 (PS85) / Labrasol®, (b) PS 85 / Cremophor® EL, (c) Glycérol / PS85. Les tailles des globules multiples des formules sont (a) 150 nm, (b) 40 nm et (c) 200 nm. La stabilité est de (a) 24 h, (b) 6 mois et (c) 2 mois. Le système multiple a été caractérisé par microscopie électronique à transmission et calorimétrie différentielle à balayage (DSC). L'évaluation de la viabilité cellulaire a montré une cytotoxicité aigüe (a) et retardé (b) et absence de cytotoxicité (c). La stabilité de la formulation (c) a été améliorée par ajout d'un glycéride hémisynthétique (Suppocire®DM). Différentes méthodes d'évaluation du taux d'encapsulation ont été testées, des méthodes usuelles (ultracentrifugation, dialyse) et d'autres méthodes (dégradation enzymatique, intercalant de l'ADN) avec des résultats montrant une interaction. La mise en évidence de la formation de micelles de PS85 dans la phase aqueuse externe a permis d'expliquer cette interaction. L'ultrafiltration a montré que le PS85 encapsulait du principe actif dans la phase aqueuse externe. L'évaluation de l'encapsulation de DTPA-Europium par DSC a permis détecter un taux d'encapsulation de 68 %. Du DTPA-Gadolinium incorporé dans la phase aqueuse interne a montré une supériorité comme agent de contraste positif par imagerie par résonnance magnétique par rapport à la solution de référence. / The aim was to formulate nanoscale Water/Oil/Water (W/O/W) multiple emulsion (ME) byself-emulsification, to evaluate their cytotoxicity and the encapsulation rate of DTPAEuropiumsolution. Three W/O/W ME have been developed. The lipophilic phase is composed of medium chain triglyceride (MCT) and two surfactants (ratio 7/3), which are : formulations:(a) Polysorbate 85 (PS85) / Labrasol ®, (b) PS85 / Cremophor EL®, (c) Glycerol / PS85. The sizes of multiple droplets are (a) 150 nm, (b) 40 nm and (c) 200 nm. Stabilities are (a) 24 h, (b)6 months and (c) 2 months. Multiple system has been characterized by transmission electronmicroscopy and differential scanning calorimetry (DSC). Evaluation of cell viability showacute cytotoxicity (formulation a), delayed cytotoxicity (formulation b) and no cytotoxicity(formulation c). The stability of formulation (c) has been improved by adding to the oily phase a hemisynthetic glycerid (Suppocire® DM). Different methods of evaluation of encapsulation rate have been tested: conventional methods (ultracentrifugation, dialysis, conductivity) and methods used for other nanosystems (enzymatic degradation, DNA intercalating). Results have shown an interaction. The demonstration of the formation of micelles or an emulsion ofPS85 in the external aqueous phase allowed explaining this interaction. Ultrafiltration was used to characterize it and to show that the PS85 encapsulates the active subtance in the external aqueous phase. Evaluation of the encapsulation of a solution of DTPA - Europium byDSC has overcome this interaction, and detecting an encapsulation rate of about 68 %. The incorporation of a solution of DTPA - Gadolinium in the internal aqueous phase has shown superiority as a positive contrast agent in magnetic resonance imaging as compared to a reference solution.
|
2 |
Etude de la toxicité in vitro et de l'efficacité ex vivo et in vivo de formes galéniques de calixarène développées pour le traitement des contaminations cutanées dues à des composés d'uranium / Study of in vitro toxicity and ex vivo and in vivo efficiency of calixarene galenic forms developed for the treatment of cutaneous contamination due to uranium compoundsGrives, Sophie 13 March 2015 (has links)
En cas de contamination cutanée radiologique par des composés d’uranium, les seuls traitements actuellement employés consistent en un rinçage de la zone contaminée par de l’eau et des détergents, ou par une solution de sel calcique de l’acide diéthylène-triamine-pentaacétique (Ca-DTPA). Ces derniers ne sont cependant pas efficaces vis-à-vis de l'uranium. De plus, en l'absence de traitement d'urgence, le passage transcutané de ce radionucléide est rapide, et induit une exposition interne après sa distribution dans l’organisme par le biais de la circulation sanguine. Une partie de l'uranium ainsi biodisponible est alors stockée dans les organes cibles que sont principalement les reins et le squelette, où ses effets toxiques se manifestent. C'est pourquoi une formulation topique consistant en une nanoémulsion huile dans eau, incorporant des molécules de calixarène tricarboxylique en tant qu'agent chélatant spécifique de l'uranium, a été initialement développée. Les travaux menés dans le cadre de cette thèse visent à évaluer l'efficacité de décontamination ex vivo et in vivo de ce nouveau traitement d'urgence à la fois sur peaux intactes et sur peaux lésées superficiellement. Pour cela, le modèle d'excoriation a été utilisé. Des modèles de lésions reproductibles ont également été mis en place afin de mimer des incisions par micro-piqûres et microcoupures. Ces études démontrent que la nanoémulsion de calixarène pourrait constituer un traitement de décontamination efficace, moins agressif que l’emploi de l’eau savonneuse actuellement employée. Sa potentielle toxicité cutanée a également été évaluée in vitro par l'utilisation d'épiderme humain reconstitué, combinée à trois différents tests de toxicité (MTT, LDH et IL-1-α). Dans le cadre de ces études, il a ainsi été démontré que la nanoémulsion de calixarène n’induit pas de toxicité cutanée, même après un temps de contact prolongé jusqu'à 24 h. / In case of radiological skin contamination by uranium compounds, the only treatments currently available consist in rinsing the contaminated skin area with water and detergent, or with a calcium salt of diethylene triamine pentaacetic acid (Ca-DTPA) solution. However, these procedures are not specific and no efficient treatment for cutaneous contamination due to uranium exists. In the absence of such treatments, uranium diffusion through the skin is fast, inducing an internal exposure after its distribution inside the body through the bloodstream. One part of the bioavalaible uranium is uptaken in target organs which are the kidneys and the skeleton, where its toxic effects occur. Therefore a topical formulation consisting of an oil-in-water nanoemulsion incorporating a tricarboxylic calixarene molecule, as a specific chelating agent for uranium, was previously developed. The work achieved in this thesis aimed at evaluating the ex vivo and in vivo decontamination efficiency of this new emergency treatment on intact and superficially wounded skin. For this purpose, skin excoriation model was used. Reproducible models of superficial wounds consisting of micro-cuts and micro-punctures were also developed in order to evaluate the efficiency of the nanoemulsion on physical wounds such as incisions. These studies showed that the calixarene nanoemulsion could be an efficient decontaminant treatment, less aggressive than using the current treatment: soaped water. Its potential cutaneous toxicity was evaluated on in vitro reconstructed human epidermis using three different toxicity tests (MTT, LDH and IL-1-α). These studies demonstrated that the calixarene nanoemulsion did not induce skin toxicity even after 24 h of exposure time.
|
3 |
Plateforme de nanoémulsions destinées au diagnostic et à la thérapeutique / Nanoemulsion platform for diagnostic and therapeutic purposesPrevot, Geoffrey 31 October 2018 (has links)
Les nanoémulsions huile dans eau (H/E) sont utilisées depuis plus de 50 ans en clinique humaine comme source de lipides en nutrition parentérale. Si cette dernière décennie a vu émerger la mise à profit de cette forme comme véhicule de substances actives lipophiles, l’utilisation des nanoémulsions comme vecteur d'agents thérapeutique ou diagnostique reste encore sous-exploitée. L’objectif de cette thèse a été le développement d'une plateforme de nanoémulsions comme vecteur alternatif aux nanosystèmes classiquement utilisés. Deux applications ont été visées : le diagnostic de la plaque vulnérable d'athérosclérose et le traitement de la maladie de Parkinson. Les nanoémulsions ont été fonctionnalisées avec des anticorps humanisés dirigés contre l’athérome et chargées avec des particules magnétiques pour servir d’agent de contraste moléculaire pour l’imagerie par résonance magnétique (IRM) et pour une nouvelle technique : l’imagerie par particules magnétique (IPM). L'efficacité du nanosystème pour le ciblage de la plaque a été démontré sur des souris athéromateuses. L’inclusion de chromophores lipophiles originaux et ultrabrillants ainsi que la possibilité d'incorporer des substances actives ont permis d’ouvrir la voie vers le développement de formulations multimodales et théranostiques. Les nanoémulsions thérapeutiques contre Parkinson ont été développées pour rétablir le pH lysosomal des neurones dopaminergiques par l'encapsulation d'un polymère (PLGA). Ce défaut d’acidification favorise la mort cellulaire par l’accumulation de déchets dans les neurones. La formulation a été optimisée pour le passage intracérébral par voie intraveineuse ou intranasale. Les résultats montrent un passage cérébral in vivo par voie intraveineuse avec une confirmation in vitro de la régénération du pH. Les perspectives de ce travail sont la poursuite de la plateforme et l'ouverture vers de nouvelles applications comme l'hyperthermie magnétique dans les cancers. / Oil in water (O/W) nanoemulsions have been used for over 50 years in human clinics as a lipids source in parenteral nutrition. Even if nanoemulsions have recently emerged as vehicles for lipophilic active pharmaceutical ingredient (API) their use as a therapeutic or diagnostic agent is still under-exploited. The objective of this Ph.D thesis was to develop an nanoemulsions platform as an alternative to conventionally used nanosystems. In this work, 2 applications have been studied: the diagnosis of vulnerable plaque in atherosclerosis, and the treatment of Parkinson's disease. Nanoemulsions have been functionalized with humanized antibody targeting atheroma and loaded with magnetic particles as molecular contrast agents for magnetic resonance imaging (MRI) and an emerging technique: magnetic particle imaging (MPI). The successful plaque targeting has been demonstrated in atheromatous mice. The inclusion of original and ultra-bright lipophilic chromophores as well as the loading of API have paved the way to the development of multimodal and theranostic formulations. Therapeutic nanoemulsions against Parkinson’s disease have been developed to restore lysosomal pH of dopaminergic neurons with acidic polymer (PLGA). Acidification dysfunction leads to cell death due to the accumulation of waste inside neurons. The formulation has been optimized for brain delivery through intravenous or intranasal administration. The results show brain delivery in vivo trough intravenous injection associated with a pH rescue in vitro. The perspectives will focus on optimizing this platform and use it for new applications such as magnetic hyperthermia in cancers.
|
4 |
Nanoémulsions d'intérêt pharmaceutique stabilisées par la beta-lactoglobuline / Nanoemulsions stabilized by beta-lactoglobulin for a Pharmaceutical applicationAli, Ali 16 December 2016 (has links)
Les nanoémulsions (NEs) huile/eau peuvent être utilisées en tant que systèmes de délivrance des médicaments pour l’encapsulation des substances actives hydrophobes afin d’améliorer leur stabilité et leur biodisponibilité. Néanmoins, leur stabilisation nécessite l’utilisation de concentrations plus importantes de tensioactifs par rapport aux émulsions conventionnelles en raison de l’augmentation de la surface spécifique. La plupart des tensioactifs synthétiques couramment utilisés dans la formulation des émulsions sont potentiellement irritants, voire toxiques. Cela entrave l'application thérapeutique des NEs en particulier pour les traitements à long terme. L'objectif de cette thèse est alors de formuler des NEs pharmaceutiques huile/eau stabilisées par un biopolymère, la beta-lactoglobuline (beta-lg), à la place des tensioactifs synthétiques.Les NEs ont été préparées par homogénéisation à haute pression (HHP). La composition de la formulation et les conditions du procédé ont été optimisées afin d’obtenir des gouttelettes nanométriques dans des NEs stables. Les résultats ont montré que les NEs les plus stables, avec une taille de gouttelettes < 200 nm, ont été obtenues quand 5 m/m% de l’huile ayant la viscosité la plus faible ont été utilisés en tant que phase huileuse, 95 m/m% de la solution de beta-lg à une concentration de 1 m/m% ont été utilisés en tant que phase aqueuse et 4 cycles d’HPH de 100 MPa ont été appliqués. Cette formulation a été stable contre les phénomènes de croissance de gouttelettes pendant au moins 30 jours grâce à un film interfacial quasiment purement élastique. La gomme xanthane, un polysaccaride naturel, a été ajoutée à la formulation optimale à une concentration de 0,5 m/m% en tant qu’agent épaississant. Cela a permis d’obtenir une texture crémeuse avec un comportement rhéofluidifiant. Dans cette dernière formulation, la vitesse de migration des gouttelettes a été considérablement réduite et la stabilité des NEs a été améliorée.Les effets du procédé d’HPH sur les différents niveaux de structure de la protéine ont été évalués à l’aide de méthodes spectroscopiques, chromatographiques et électrophorétiques. L’influence de ce traitement sur ses propriétés interfaciales et émulsionnantes a également été étudiée. L’efficacité émulsionnante optimale a été obtenue quand les conditions d’HPH n’ont pas altéré la structure de la beta-lg, ni ses propriétés interfaciales. Néanmoins, un traitement d’HHP excessif (300 MPa/5 cycles) a induit des modifications structurelles, principalement une transformation des feuillets beta en structures désordonnées, une large perte dans le cœur hydrophobe, et une agrégation importante par des liaisons disulfure intermoléculaires. La beta-lg modifiée par l’HHP a montré une hydrophobie de surface plus importante conduisant à une vitesse d’adsorption à l’interface huile/eau plus élevée et une formation plus précoce d’un film interfacial. La dénaturation de la protéine par ce traitement à haute pression, qui a été effectuée avant le processus d’émulsification, n'a pas modifié de façon significative l'efficacité émulsionnante. La réduction de l’efficacité a été probablement plutôt induite par la dénaturation simultanée avec l’émulsification sous conditions d’écoulement très turbulent.L’intérêt de la formulation développée en tant que véhicule pour un modèle de substance active hydrophobe a été étudié avec l’isotrétinoïne (IT), usuellement utilisé pour le traitement de l’acné sévère. La formulation développée a permis d’encapsuler 0,033 m/m% d’IT sans aucune modification de la stabilité du système. Environ 10 % de l’IT ajoutée ont été solubilisés dans la phase aqueuse en association avec la protéine libre en excès. L’IT encapsulée dans les gouttelettes huileuses a été plus stable contre la photo-isomérisation que celle associée à la protéine libre. La formulation développée apparait prometteuse en tant que système de délivrance de l’IT pour une application cutanée. / Oil-in-water nanoemulsions can be used as drug delivery systems for the encapsulation of hydrophobic active substances in order to increase their solubility and their bioavailability. However, due to their higher specific area, their stabilization requires higher surfactant concentrations compared to conventional emulsions. Most of the synthetic surfactants commonly used in emulsion formulation are potentially irritant and even toxic, which hinders the therapeutic application of nanoemulsions especially during long-term treatment. The objective of this thesis is thus to formulate pharmaceutical oil/water nanoemulsions stabilized by a biopolymer, beta-lactoglobulin (beta-lg), instead of synthetic surfactants. Nanoemulsions were prepared by high pressure homogenization (HPH). The formulation composition and the process conditions were optimized in order to obtain nanometric droplets within stable nanoemulsions. The results showed that the most stable nanoemulsions, with droplet size inférieure à 200 nm, were obtained when 5 w/w% of the oil with the lowest viscosity value was used as the oily phase, 95 w/w% of beta-lg solution at a concentration of 1 w/w% was used as the aqueous phase, and 100 MPa of homogenization pressure was applied for 4 cycles. This formulation was stable against droplet growth phenomena during 30 days at least, thanks to a quasi purely elastic interfacial film. Xanthan gum, a natural polysaccharide, was added to the optimal formulation as a texturizing agent at a concentration of 0.5 w/w%. This allowed obtaining a cream texture with a shear thinning behavior. In this formulation, the migration rate of droplets was considerably reduced and the nanoemulsions stability was enhanced.The effects of the homogenization process on the different levels of the protein structure were assessed by spectroscopic, chromatographic and electrophoretic methods. The influence of this treatment on its interfacial and emulsifying properties was also investigated. The optimal emulsifying efficiency was obtained when the homogenization conditions did alter neither the structure of beta-lg nor its interfacial properties. However, an excessive HPH treatment (300 MPa/5 cycles) introduced structural modifications, mainly from beta-sheets into random coils, wide loss in lipocalin core, and protein aggregation by intermolecular disulfide bridges. HPH modified beta-lg displayed higher surface hydrophobicity inducing a higher adsorption rate at the O/W interface and an earlier formation of an elastic interfacial film. Structural and interfacial properties modifications by HPH denaturation appeared qualitatively similar to that of the heat denaturation with, however, differences in extent. Protein denaturation by a high pressure treatment that was performed before the emulsification process did not alter significantly its emulsifying efficiency. The reduction in the efficiency was rather induced by the simultaneous denaturation with the emulsification under high turbulent flow.The efficiency of the developed formulation as a vehicle for a model hydrophobic active substance was studied using isotretinoin, usually used for the treatment of severe acne. The developed formulation was able to encapsulate 0.033 w/w of isotretinoin without any modification on the system stability. About 10 % of the added isotretinoin was solubilized in the aqueous phase associated with the free protein in excess. Isotretinoin encapsulated in the oily droplets was more stable against photo isomerization than the one associated to the excess protein in the aqueous phase. The developed formulation seems promising as a drug delivery system of isotretinoin for a dermal application.
|
Page generated in 0.0764 seconds