1 |
Design of Novel Synthetic Iron Oxide Nano-Catalyst Over Homemade Nano-Alumina for an Environmentally Friendly Fuel: Experiments and ModellingJarullah, A.T., Al-Tabbakh, B.A., Ahmed, M.A., Hameed, S.A., Mujtaba, Iqbal 04 July 2022 (has links)
No / Achieving an environmentally friendly fuel with respect to minimum sulfur compounds has recently became a significant issue for petroleum refining industries. This paper focuses on investigating oxidative desulfurization (ODS) process for removal of sulfur compounds found in light gas oil (LGO) in a batch reactor (at different reaction temperatures and batch time) using a novel nano-catalyst based on 4% iron oxide (Fe2O3) as an active component. Precipitation and Impregnation methods are used to prepare the nano-gamma alumina (γ-alumina) and to generate the new synthetic homemade nanocatalyst. A mathematical model is formulated for the ODS process to estimate the optimal kinetic parameters within gPROMS package. An excellent consistency with the experimental data of all runs with error less than 5% have obtained. The optimization results display that the new nanocatalyst prepared here is effective in removing more than 97% of the sulfur compounds from LGO resulting in a cleaner fuel. / The authors thank Petroleum Research and Development Center, The Iraqi Ministry of Oil /Baghdad, IRAQ for its financial support.
|
2 |
Evaluation the performance of the tin (IV) oxide (SnO2) in the removal of sulfur compounds via oxidative-extractive desulfurization process for production an eco-friendly fuelHumadi, J.I., Issa, Y.S., Aqar, D.Y., Ahmed, M.A., Ali Alak, H.H., Mujtaba, Iqbal 22 September 2022 (has links)
Yes / Catalysts play a vital role in petroleum and chemical reactions. Intensified concerns for cleaner air with strict environmental regulations on sulfur content in addition to meet economic requirements have generated significant interests for the development of more efficient and innovative oxidative catalysts recently. In this study, a novel homemade nano catalyst (manganese oxide (MnO2) over tin (IV) oxide (SnO2)) was used for the first time as an effective catalyst in removing dibenzothiophene (DBT) from kerosene fuel using hydrogen peroxide (H2O2) as oxidant in catalytic oxidative-extractive desulfurization process (OEDS). The catalyst was prepared by impregnation method with various amount of MnO2 loaded on SnO2. The oxidation step was carried out at different operating parameters such as reaction temperature and reaction time in batch reactor. The extractive desulfurization step was performed by using acetonitrile as solvent under several operating conditions (agitation speed and mixing time). The activity of MnO2/SnO2 catalyst in removing various sulfur compounds from kerosene fuel at the best operating conditions was investigated in this work. The results of the catalyst characterization proved that a high dispersion of MnO2 over the SnO2 was obtained. The experiments showed that the highest DBT and various sulfur compounds removal efficiency from kerosene fuel under the best operating conditions (oxidation: 5% MnO2/SnO2, reaction temperature of 75 0C, and reaction time of 100 min, extraction: acetonitrile, agitation speed of 900 rpm, and mixing time of 30 min) via the catalytic oxidative-extractive desulfurization process was 92.4% and 91.2%, respectively. Also, the MnO2/SnO2 catalyst activity was studied after six consecutive oxidation cycles at the best operating conditions, and the catalyst prove satisfactory stability in terms of sulfur compounds removal. After that, the spent catalyst were regenerated by utilizing different solvents (methanol, ethanol and iso-octane), and the experimental data explained that iso-octane achieved highest regeneration efficiency. / This study was supported by College of Petroleum Processes Engineering, Tikrit University, Iraq and Ministry of Oil, Iraq.
|
3 |
Performance enhancement of adsorption desulfurization process via different new nano-catalysts using digital baffle batch reactor and mathematical modelingNawaf, A.T., Hamed, H.H., Hameed, S.A., Jarullah, A.T., Abdulateef, L.T., Mujtaba, Iqbal 17 March 2022 (has links)
Yes / Several new homemade nano-catalysts are prepared here to reduce sulfur compound found in light gas
oil (LGO) utilizing the adsorption desulfurization technique. The effect of different support materials
(Fe2O3, Cr2O3 and CdO) having the same particle size (20 nm) on the adsorptive desulfurization performance for loading 5% nickel sulfate (5 wt%NiO) as an active component for each catalyst, is studied.
Oxidative desulfurization process (ODS) in a novel digital baffle batch reactor (DBBR) is used to evaluate
the performance of the catalysts prepared. Moderate operating conditions are employed for the ODS process. The efficient new nano-catalysts with for the removal of sulfur are found to be 93.4%, 85.6% and
62.1% for NiO/Fe2O3, NiO/Cr2O3 and NiO/CdO, respectively at 175 deg C, 75 min and 2 ml of H2O2. The best
kinetic model and the half-live period for the nano-catalysts related to the relevant reactions have also
been investigated here.
|
4 |
A novel synthetic nano-catalyst (Ag2O3/Zeolite) for high quality of light naphtha by batch oxidative desulfurization reactorNawaf, A.T., Hameed, S.A., Abdulateef, L.T., Jarullah, A.T., Kadhim, M.S., Mujtaba, Iqbal 30 March 2022 (has links)
Yes / Oxidative desulfurization process (ODS), enhanced with a novel metal oxide (Ag ions) as an active component over nano-zeolite that has not been reported in the literature, is used here to improve the fuel quality by removing mercaptan (as a model sulfur compound in the light naphtha). Nano-crystalline (nano-support (Nano-zeolite)) composite is prepared by Incipient Wetness Impregnation method loaded with a metal salt to obtain 0.5, 1 and 1.5% of Ag2O3 over Nano-zeolite. The new homemade nano-catalysts (Ag2O3/Nano-zeolite) prepared are characterized by Brunauer-Emmett-Teller (BET) (surface area, pore volume and pore size), X-ray Diffraction (XRD), Fourier Transform Infra Red (FTIR), and Scanning Electron Microscopy (SEM) analysis. The ODS process is then used to evaluate the performance of the catalysts for the removal of sulfur at different reaction temperatures (80-140 °C) and reaction times (30-50 min) in a batch reactor using the air as oxidant. 87.4% of sulfur removal has been achieved using 1% silver oxide loaded on Nano zeolite (1% of Ag2O3/Nano-zeolite) giving a clear indication that our newly designed catalyst is highly efficient catalyst in the removal of sulfur compound (mercaptan) from naphtha. A new mechanism of chemical reaction for sulfur removal by oxygen using the new homemade catalyst (Ag2O3/Nano-zeolite) prepared has been suggested in this study. The best kinetic model parameters of the relevant reactions are also estimated in this study using pseudo first order technique based on the experimental results.
|
5 |
Design of a new synthetic nanocatalyst resulting high fuel quality based on multiple supports: experimental investigation and modelingJarullah, A.T., Ahmed, M.A., Al-Tabbakh, B.A., Mujtaba, Iqbal 06 April 2022 (has links)
Yes / In order to meet the environmental legislations related to sulfur content, it is important to find an alternative techniques for deep removal of sulfur components from fuels. So, in this study, a novel nano-catalyst based on iron oxide (Fe2O3) as active component prepared over composite support (γ-Alumina + HY-zeolite) is developed here for efficient removal of sulfur compounds from fuel via oxidation process. The precipitation method is employed first to prepare the composite support and then the impregnation method is utilized to generate a novel synthetic homemade (Fe2O3/ composite support) nanocatalysts that has not been developed in the literature (iron oxide over composite support). The characterizations of the prepared catalysts display that the surface area of the catalyst increases with increasing the amount of Y-zeolite in composite support. The effectiveness of the catalysts is tested by utilizing oxidative desulfurization (ODS) operation under several operating conditions. The results of the experimental work show that the activity of oxidative desulfurization enhances with increasing Y-zeolite, temperature, and batch time under moderate operating conditions. The oxidative desulfurization efficiency followed the order: CAT-1 < CAT-2 < CAT-3. The CAT-3 performed the high removal of sulfur compounds (90.73%) at 100 min and 423 K. The best values of the kinetic parameters of the ODS process are then determined based on experimental data and model based techniques within gPROMS package. Finally, the reactor model is used to determine the optimal operating conditions while maximizing the removal of sulfur compounds leading to cleaner fuel. Where, 99.3% of the sulfur removal has achieved at batch time of 190.6 min, temperature of 543.56 K and initial sulfur content at 0.8668 wt% in the presence of CAT-3 based on the optimal kinetic parameters (order of reaction (n) of 1.9865719, activation energy (EA) at 29.942 KJ/mol and pre-exponential factor (ko) with 622.926 wt-0.9865719. min-1).
|
6 |
Production of Green Fuel: A Digital Baffle Batch Reactor for Enhanced Oxidative Desulfurization of Light Gas Oil Using Nano-CatalystHameed, S.A., Nawaf, A.T., Mahmood, Q.A., Abdulateef, L.T., Jarullah, A.T., Mujtaba, Iqbal 04 July 2022 (has links)
Yes / A digital baffle batch reactor (DBBR) for oxidative desulfurization (ODS) reactions is designed and applied here in order to reduce the sulfur concentration presented in light gas oil (LGO) based on a novel homemade nano-catalyst (Copper Oxide (CuO)/Activated Carbon (AC)). With efficient impregnation, good pore size distribution, high activity and higher surface area, the designed nano-catalyst (CuO/AC) demonstrated excellent catalytic efficiency. To evaluate the effectiveness of nano catalyst (prepared experimentally), several experiments related to ODS reactions using the digital baffle batch reactor are carried out under moderate process conditions (reaction temperature (100, 120 and 140 °C), contact time (15, 30 and 45 min) and oxidant (H2O2) amount (2, 3 and 5 ml)). The experimental outcomes indicated that increasing the reaction temperature, batch time and oxidant amount lead to reduced sulfur concentration of oil feedstock leading to a greener fuel. The efficiency of sulfur conversion is reported to be 83.1 % using the modified nano-catalysts and new reactor (DBBR) at reaction temperature 140 oC, batch time 45 min and H2O2 amount of 5 ml. So, such new results using DBBR for ODS reactions based on CuO/AC as a new modified nano catalyst has not been reported in the public domain and it is considered as new results.
|
7 |
Hierarchical Hybrid Materials from Flexible Fabric SubstratesWang, Wenhu 29 May 2020 (has links)
No description available.
|
8 |
A new synthetic composite nano-catalyst achieving an environmentally Friendly fuel by batch oxidative desulfurizationJarullah, A.T., Aldulaimi, S.K., Al-Tabbakh, B.A., Mujtaba, Iqbal 31 March 2022 (has links)
Yes / Production of clean fuel has recently become one of the most important goals for petroleum refining industries. The objective of this work is to obtain such clean fuel using simple and easy process under safe conditions. For this purpose, batch oxidative desulfurization (ODS) process is considered here to remove sulfur compounds found in light gas oil using a new composite synthetic homemade nano-catalyst. First the support for the new catalyst, which is HY zeolite nanoparticles, is prepared using sol-gel method. The support is then employed to generate the synthetic composite nano-catalyst which is made of copper oxide and nickel oxide using the impregnation method with different proportions of the active components such as: 5% CuO +25 % NiO, 10 % CuO +20 % NiO, 15 % CuO +15 % NiO, 20 % CuO +10 % NiO and 25 % CuO +5% NiO. An excellent distribution of the active metals with high surface area and pore volume as a result high activity has obtained. A fully automated batch reactor is used for the oxidative desulphurization of sulfur compounds and the performance of the new nano-catalyst at different safe reaction conditions (reaction temperature from 353−413 K, reaction time from 30−90 min) is evaluated in terms of sulfur removal.
|
9 |
Design of an environmentally friendly fuel based on a synthetic composite nano-catalyst through parameter estimation and process modelingJarullah, A.T., Muhammed, S.K., Al-Tabbakh, B.A., Mujtaba, Iqbal 31 March 2022 (has links)
Yes / In this paper, oxidative desulfurization (ODS) process is studied for the purpose of removing the sulfur components from light gas oil (LGO) via experimentation and process modeling. A recently developed (by the authors) copper and nickel oxide based composite nano-catalyst is used in the process. The ODS experiments are conducted in a batch reactor and air is used as an oxidizer under moderate operation conditions. Determination of the kinetic parameters with high accuracy is necessary of the related chemical reactions to develop a helpful model for the ODS operation giving a perfect design of the reactor and process with high confidence. High conversion of 92% LGO was obtained under a reaction temperature of 413 K and reaction time of 90 min for synthesized Cu Ni /HY nano-catalyst. Here model based optimization technique incorporating experimental data is used to estimate such parameters. Two approaches (linear and non-linear) are utilized to estimate the best kinematic parameters with an absolute error of less than 5% between the predicted and the experimental results. An environmentally friendly fuel is regarded the main goal of this study, therefore the optimization process is then employed utilizing the validated model of the prepared composite nano-catalyst to get the optimal operating conditions achieving maximum conversion of such process. The results show that the process is effective in removing more than 99% of the sulfur from the LGO resulting in a cleaner fuel.
|
10 |
Catalytic upgrading of rice straw bio-oil with alcohols using different bimetallic magnetic nano-catalystsIbrahim, Alhassan 10 May 2024 (has links) (PDF)
This dissertation addresses the surging global demand for sustainable energy alternatives and biobased products, driven by population growth and the imperative to shift away from finite fossil fuels amidst climate change. The research centers on the catalytic upgrading of rice straw bio-oil, employing bimetallic magnetic nano-catalysts on rice straw-derived biochar to align with the imperative for environmentally conscious energy solutions. In the initial phase, the study systematically explores upgrading processes using varied alcohols, specifically ethanol, and butanol, under mild conditions to enhance bio-oil quality. The detailed evaluation of catalyst composition reveals a notable reduction in oxygen content, coupled with a significant increase in energy density and calorific value. The upgraded bio-oil not only exhibits heightened stability but also undergoes a substantial shift towards a more desirable hydrocarbon-rich composition. The second part of the research optimizes upgrading process parameters catalyst concentration, reaction holding time, and reaction temperature using Response Surface Methodology based on the Box-Behnken experimental design. This optimization refines the catalytic upgrading process, enhancing its efficiency and reliability. Beyond catalytic efficacy, the study considers the magnetic recovery of catalysts for potential reuse, emphasizing sustainability on a broader scale. Set against the backdrop of global energy challenges, this research significantly contributes to advancing the understanding of bimetallic magnetic nano-catalysts. The dissertation unfolds in two parts, with the first segment focusing on Catalytic Upgrading of Rice Straw Bio-Oil via Esterification in Supercritical Ethanol Over Bimetallic Catalyst (CuO-Fe3O4/AcB), involving the variation of Cu and Fe metals on Rice Straw Biochar without hydrogen gas. The exploration continues with the Upgrading of Rice Straw Bio-Oil in Butanol and hydrogen gas Over a Sustainable Magnetic Bimetallic Nano-Catalyst (ZrO2-Fe3O4/AcB). The integrated analytical approach, utilizing XRD, SEM, FT-IR for synthesized catalysts, alongside GC-MS and the Bomb Calorimeter for bio-oil samples, establishes a nuanced understanding crucial for optimizing catalytic performance in sustainable biofuel production.
|
Page generated in 0.0418 seconds