• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Photochemical and Photoelectric Applications of II-VI Semiconductor Nanomaterials

Sugunan, Abhilash January 2010 (has links)
<p>In this work we investigated fabrication of semiconductor nanomaterials and evaluated their potential for photo-chemical and photovoltaic applications. We investigated two different II-VI semiconductor nanomaterial systems; (i) ZnO oriented nanowire arrays non-epitaxially grown from a substrate; and (ii) colloidal CdTe nanotetrapods synthesized by solution-based thermal decomposition of organo-metallic precursors. In both the cases our main focus has been optimizing material synthesis for improving potential applications based on photon-electron interactions.</p><p>We have studied the synthesis of vertically aligned ZnO nanowire arrays (NWA), by a wet chemical process on various substrates. The synthesis is based on epitaxial growth of ZnO seed-layer on a substrate in a chemical bath consisting of an aqueous solution of zinc nitrate and hexamethylenetetramine (HMT). We have suggested an additional role played by HMT during the synthesis of ZnO nanowire arrays. We have also extended this synthesis method to fabricate hierarchical nanostructures of nanofibers of poly-L-lactide acting as a substrate for the radially oriented growth of ZnO nanowires. The combination of high surface area of the nanofibrous substrate with the flexibility of the PLLA-ZnO hierarchical nanostructure enabled the proof-of-principle demonstration of a ‘continuous-flow’ water treatment system that could effectively decompose single and combination of known organic pollutants in water, as well as render common waterborne bacteria nonviable.</p><p>We have studied another chemical synthesis that is commonly used for size controlled synthesis of colloidal quantum dots, which was modified to obtain anisotropic nanocrystals mainly for CdE (E=S, Se, Te) compositions. In this work we demonstrate by use of oleic acid (instead of alkylphosphonic acids) it is possible to synthesize CdTe and CdSe nanotetrapods at much lower temperatures (~180 ºC) than what is commonly reported in the literature, with significantly different  formation mechanism in the low-temperature reaction.</p><p>Finally, we have performed preliminary photoconduction measurements with CdTe nanotetrapods using gold ‘nanogap’ electrodes fabricated in-house, and obtain up to 100 times enhancement in current levels in the <em>I–V </em>measurements under illumination with a white light source.</p> / QC20100607
2

Development of UHF Micromechanical Resonators and Arrays Based on Silicon-OnInsulator (SOI) Technology

Xiong, Mingke 20 March 2010 (has links)
A novel micromachining technology on SOI substrates is presented that is capable of producing on-chip high-Q resonators and resonator arrays equipped with high aspect-ratio (30:1) microstructures and nano-gap capacitive transducers filled with high-k dielectrics. The newly developed IC-compatible MEMS microfabrication process consists of merely three standard photolithography steps, which is much simpler than the other SOI-based resonator device technologies. In order to achieve the optimum performance and yield of the resonators and resonator arrays, this SOI-based fabrication process has been carefully designed and investigated step by step. For capacitively-transduced extensional mode (e.g., radial-contour and wine-glass mode) resonators, formation of nano-scale capacitive gaps and large resonator-to-electrode overlap area is essential for reducing the motional resistance Rx and DC bias voltage by strengthening the capacitive transduction. Atomic Layer Deposition (ALD) technology with superb conformability and uniformity as well as outstanding thickness controllability is used to deposit the ultra-thin layer (~10 nm) of high-k dielectric material that acts as the solid capacitive gaps, which allows the mass production of on-chip capacitively-transduced resonators and resonator arrays with greatly enhanced electromechancial coupling coefficient, and thus lower motional resistance and DC bias voltage. Using this technique, high-Q micromechanical resonators and resonator arrays on SOI substrates operating at ultra-high frequencies (UHF) have been developed. The ultimate goal of this project is to implement on-chip narrow-band micromechanical filters with unprecedented frequency selectivity and ultra-low insertion loss. By fine-tuning the nonlinear characteristics of the capacitive transducers enabled by the new SOI technology, novel on-chip mechanical signal processors for frequency manipulation, such as mixer and multiplier, will be investigated.
3

Photochemical and Photoelectric Applications of II-VI Semiconductor Nanomaterials

Sugunan, Abhilash January 2010 (has links)
In this work we investigated fabrication of semiconductor nanomaterials and evaluated their potential for photo-chemical and photovoltaic applications. We investigated two different II-VI semiconductor nanomaterial systems; (i) ZnO oriented nanowire arrays non-epitaxially grown from a substrate; and (ii) colloidal CdTe nanotetrapods synthesized by solution-based thermal decomposition of organo-metallic precursors. In both the cases our main focus has been optimizing material synthesis for improving potential applications based on photon-electron interactions. We have studied the synthesis of vertically aligned ZnO nanowire arrays (NWA), by a wet chemical process on various substrates. The synthesis is based on epitaxial growth of ZnO seed-layer on a substrate in a chemical bath consisting of an aqueous solution of zinc nitrate and hexamethylenetetramine (HMT). We have suggested an additional role played by HMT during the synthesis of ZnO nanowire arrays. We have also extended this synthesis method to fabricate hierarchical nanostructures of nanofibers of poly-L-lactide acting as a substrate for the radially oriented growth of ZnO nanowires. The combination of high surface area of the nanofibrous substrate with the flexibility of the PLLA-ZnO hierarchical nanostructure enabled the proof-of-principle demonstration of a ‘continuous-flow’ water treatment system that could effectively decompose single and combination of known organic pollutants in water, as well as render common waterborne bacteria nonviable. We have studied another chemical synthesis that is commonly used for size controlled synthesis of colloidal quantum dots, which was modified to obtain anisotropic nanocrystals mainly for CdE (E=S, Se, Te) compositions. In this work we demonstrate by use of oleic acid (instead of alkylphosphonic acids) it is possible to synthesize CdTe and CdSe nanotetrapods at much lower temperatures (~180 ºC) than what is commonly reported in the literature, with significantly different  formation mechanism in the low-temperature reaction. Finally, we have performed preliminary photoconduction measurements with CdTe nanotetrapods using gold ‘nanogap’ electrodes fabricated in-house, and obtain up to 100 times enhancement in current levels in the I–V measurements under illumination with a white light source. / QC20100607
4

Fabrication and Photoelectrochemical Applications of II-VI Semiconductor Nanomaterials

Sugunan, Abhilash January 2012 (has links)
In this work we investigated fabrication of semiconductor nanomaterials and evaluated their potential for photo-chemical and photovoltaic applications. We investigated different II-VI semiconductor nanomaterial systems; (i) ZnO oriented nanowire arrays non-epitaxially grown from a substrate; and (ii) colloidal CdE (E=Te,Se,S) quantum structures synthesized by solution-based thermal decomposition of organo-metallic precursors. We have studied the synthesis of vertically aligned ZnO nanowire arrays (NWA), by a wet chemical process on various substrates. We have extended this method wherein nanofibers of poly-L-lactide act as a substrate for the radially oriented growth of ZnO nanowires. By combining the large surface area and the flexibility of the PLLA-ZnO hierarchical nanostructure we have shown the proof-of-principle demonstration of a ‘continuous-flow’ water treatment system to decompose known organic pollutants in water, as well as render common waterborne bacteria non-viable. We have studied synthesis of colloidal quantum dots (QD), and show size, morphology and composition tailored nanocrystals for CdE (E=S, Se, Te) compositions. We have studied the influence of crystal growth habits of the nanocrtsyals on the final morphology. Furthermore we have synthesized core-shell, CdSe-CdS QDs with spherical and tetrahedral morphologies by varying the reaction conditions. We show that these core-shell quantum dots show quasi-type II characteristics, and demonstrate with I-V measurements, the spatial localization of the charge carriers in these hetero-nanocrystals. For this purpose, we developed hybrid materials consisting of the core-shell quantum dots with electron acceptors (ZnO nanowires) and hole acceptors (polymeric P3HT nanofibers). In addition we have also compared the synthesis reaction when carried out with conventional heating and microwave-mediated heating. We find that the reaction is enhanced, and the yield is qualitatively better when using microwave induced heating. / QC 20120525
5

Fabrication Of Nanostructured Samples For The Investigation Of Near Field Radiation Transfer

Artvin, Zafer 01 September 2012 (has links) (PDF)
Radiative heat transfer in nanostructures with sub-wavelength dimensions can exceed that predicted by Planck&#039 / s blackbody distribution. This increased effect is due to the tunneling of infrared radiation between nanogaps, and can allow the eventual development of nano-thermo-photo-voltaic (Nano-TPV) cells for energy generation from low temperature heat sources. Although near field radiation effects have been discussed for many years, experimental verification of these effects is very limited so far. In this study, silica coated silicon wafer sample chips have been manufactured by using MEMS fabrication methods for testing the near field radiation effects. A variety of samples with 1&times / 1, 2&times / 2 and 5&times / 5 mm2 area, and with 25 nm, 50 nm, 100 nm and 200 nm (nano-gap) separations have been prepared. 3D structures with vacuum gaps have been obtained by bonding of the silica coated wafers. The samples have been tested in an experimental setup by a collaborative group at &Ouml / zyegin University, Istanbul. An increase in the net radiation heat transfer with decreasing nano-gap size has been reported by the &Ouml / zyegin group who used these samples in a parallel study. The thesis outlines the micro-fabrication techniques used for the sample preparation. Also, the manufacturing problems we have faced during this research program are discussed.

Page generated in 0.0415 seconds