• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effet de l'oxygène et de l'yttrium sur la nanoprécipitation et sur la recristallisation dans un alliage ODS Fe-14Cr / Effect of oxygen and yttrium on the nanoprecipitation and the recristallization in a Fe-14Cr ODS alloy

Thual, Marc-Antoine 20 December 2017 (has links)
Les alliages ferritiques Fe—14Cr renforcés par une dispersion d'oxydes (ODS) riches en Y, Ti et O sont envisagés comme matériaux de structure pour la prochaine génération de réacteurs nucléaires. Ils allient résistance à l’irradiation neutronique et excellentes propriétés mécaniques, notamment en fluage à hautes températures. Ce travail s'est positionné sur la compréhension des effets induits par de légères variations en oxygène et en yttrium autour d’une composition chimique de référence Fe—14Cr—1W—0,3Ti—0,3Y₂O₃. Nous avons montré que le paramètre crucial est la cinétique de précipitation des nanorenforts. Elle conditionne l’évolution de la microstructure globale que ce soit avant, après filage ou sous traitement thermique. Cette cinétique est propre à la nature des phases précipitant, à leur structure cristallographique et aux relations d'orientations à l'interface particules/matrice. Ce dernier paramètre détermine la stabilité des nanorenforts et par voie de conséquence les mécanismes de recristallisation, et in fine les propriétés mécaniques. La variation des teneurs en oxygène et en yttrium peuvent induire des états consolidés à peu près équivalents en termes de nanodispersion et de propriétés mécaniques bien que les mécanismes inhérents soient différents. Les enrichissements en oxygène et en yttrium conduisent tous les deux à une recristallisation du matériau à 1300°C mais avec des mécanismes radicalement différents. Les résultats de cette étude permettent de proposer des valeurs seuil à ne pas dépasser, 0,3% de Fe₂O₃ et 0,7% d’yttrium, pour conserver de bonnes propriétés mécaniques. / Fe—14Cr ODS ferritic alloys reinforced by a dispersion of oxides rich in Y, Ti and O are considered suitable structural materials structural for the 4th generation of nuclear reactors. They combine neutron irradiation resistance and excellent mechanical properties, especially creep properties at high temperatures. This work is dedicated to the understanding of the effects induced by a small oxygen and yttrium variation around a reference chemical composition: Fe—14Cr—0,3Ti—0,3Y₂O₃. We showed that the crucial parameter is the precipitation kinetic of the nano-reinforcements which is responsible for the microstructure evolution before, after or during the thermal annealing. This kinetic is proper to the nature of the precipitating phases, their structure and to the orientation relationships at the particle/matrix interfaces. This last parameter determines the stability of the nano-reinforcements, hence the recrystallization mechanisms and their mechanical properties. The concentration variation of oxygen and yttrium can induce similar consolidated states in terms od nano-dispersion and mechanical properties even if the underlying mechanisms are different. Both the oxygen and yttrium enrichments lead to a recrystallization of the material at 1300°C by compltetly different mechanisms. This study allows to propose threshold values of 0,3% Fe₂O₃ and 0,7% yttrium, that should not be exceeded in order to maintain the quality of the mechanical properties.
2

NANOPARTICULES D'OXYDES MÉTALLIQUES : <br />RELATIONS ENTRE LA RÉACTIVITE DE SURFACE ET DES RÉPONSES BIOLOGIQUES

Auffan, Melanie 07 November 2007 (has links) (PDF)
Les nanotechnologies génèrent un engouement assimilable à une révolution technologique. Le domaine de l'environnement est concerné car les nanoparticules (NPs) apportent des solutions à plusieurs problèmes de pollution. Par exemple, nous avons montré la forte capacité de rétention de l'As (8As/nm2) par des NPs d'oxydes de fer (6nm). Ceci est lié à leur grande surface spécifique et à leur forte réactivité de surface due à la présence de sites d'adsorption inédits et à la diminution significative de l'énergie de surface lors de l'adsorption. <br />Mais des questions se posent sur l'impact (éco)toxicologique engendré par la forte production de NPs. Une classification de l'(éco)toxicité des nano-oxydes en fonction de leurs propriétés redox a été proposée. Alors que des NPs chimiquement stables (γFe2O3) en milieux biologiques ne montrent aucune toxicité, des NPs ayant un pouvoir oxydant (CeO2) ou réducteur (Fe°) sont cytotoxiques pour Escherichia coli et génotoxiques pour les fibroblastes humains.
3

Colloïdes et compositions élémentaires des solutions de sols

Pédrot, Mathieu 09 October 2009 (has links) (PDF)
Ubiquistes, dynamiques et caractérisés par d'importantes capacités de complexation de surface, les colloïdes sont supposés jouer un rôle majeur dans la mobilisation des éléments traces dans les eaux et les sols. Cette étude a pour objectif d'améliorer la compréhension du rôle des colloïdes dans la mobilisation des éléments traces en définissant (a) l'impact de paramètres physico-chimiques sur la composition élémentaire et colloïdale de la phase dissoute d'un sol de zone humide, (b) les modes de genèse de ces colloïdes, ainsi que leur rôle de phases porteuses et vectrices d'éléments traces dans les eaux et les sols. Les différents travaux accomplis mettent en avant un contrôle colloïdal pour de nombreux éléments traces présents dans la solution de sol. Ainsi, certains éléments sont fortement complexés par le compartiment colloïdal (Al, Cr, U, Mo, Pb, Ti, Th, Fe, et les REE), d'autres le sont plus modérément (Cu, Cd, Co, et le Ni) et une autre partie ne réagit pas avec les colloïdes (Li, B, K, Na, Rb, Si, Mg, Sr, Ca, Mn, Ba et le V). Le pH apparaît être un facteur majeur de contrôle de la composition élémentaire de la phase dissoute ; un changement du pH, à la hausse ou à la baisse impactant fortement les concentrations et la composition colloïdale et élémentaire de la solution de sol. De plus, le pH apparaît un acteur non négligeable de la conformation des substances humiques, principales molécules organiques actives dans la mobilisation des éléments traces dans le milieu naturel, impactant ainsi leur mobilité et celles des éléments associés. Les résultats ont confirmé la présence d'associations supramoléculaires de petites molécules organiques au sein des substances humiques, ainsi que la présence de nanoparticules de Fe intimement liées à la matière organique, et pouvant mobiliser certains éléments traces comme le Pb ou le Ti. De plus, ce travail a permis de mesurer l'impact des substances humiques sur la vitesse d'oxydation-hydrolyse du Fe, et sur la taille des oxyhydroxydes formés. Les substances humiques tendent ainsi à ralentir et à diminuer les réactions d'oxydation-hydrolyse du Fe, et impactent directement la taille des oxydes de Fe. Le Fe est ainsi présent soit sous forme ionique et complexé aux substances humiques, soit sous forme de nanoparticules et inclus dans la matrice organique. La biodisponibilité de ces nanoparticules de Fe à être utilisée comme accepteur d'électrons par des bactéries Schewanella putrefaciens a ensuite été testée en comparaison de celle de particules de Fe formées en absence de substances humiques. Les résultats évoquent une biodisponibilité accrue des nanoparticules de Fe associées aux substances humiques lors de la bioréduction. Ce résultat prouve que les colloïdes mixtes Fematière organique représentent dans les zones humides, un stock majeur de fer régulièrement sollicité par la microfaune, bien plus accessible que celui du fonds géochimique.
4

Understanding the first formation stages of (Y,Ti) nano-oxides in Oxide Dispersion Strengthened (ODS) steels / Compréhension des premiers stades de formation des nano-précipités (Y, Ti, O) dans les aciers ODS (Oxide Dispersion Strengthened)

Owusu-Mensah, Martin 26 September 2019 (has links)
Les aciers appelés ODS (pour Oxide Dispersion Strengthened), renforcés par une dispersion homogène de nano-oxydes, sont des matériaux de structure avancés pour les futurs réacteurs nucléaires de fusion et de fission. En effet ces nano-oxydes, à base d’Y et Ti, servent comme centres de recombinaison de défauts ponctuels et d'obstacles aux mouvements des dislocations, améliorant de ce fait leur résistance aux radiations et aux températures élevées. La fabrication conventionnelle des aciers ODS est réalisée par broyage mécanique suivi de traitements thermo-mécaniques, et ne permet pas facilement de comprendre les mécanismes physiques conduisant à la précipitation des nano-oxydes, ce qui serait potentiellement utile pour optimiser leur production. La cinétique de formation de ces nano-oxydes peut être étudiée en utilisant une technique alternative, à savoir la synthèse par faisceaux d’ions, qui présente de nombreux avantages, notamment le contrôle précis des paramètres expérimentaux et la possibilité de décorréler divers facteurs contribuant à la cinétique de précipitation. Au cours de cette thèse, cette technique a été utilisée pour étudier la coprécipitation d'ions métalliques (Y et/ou Ti) et d'oxygène implantés dans un alliage modèle Fe-Cr de composition proche de celle typique des aciers ODS commerciaux. Des ions de Y, Ti et O à basse énergie ont été implantés dans des échantillons d'alliage Fe10wt%Cr de haute pureté à température ambiante. Les échantillons implantés ont ensuite été recuits à diverses températures entre 600 à 1100°C pour favoriser la précipitation de nano-oxydes, conformément au principe de cette technique. La microscopie électronique à transmission a été utilisée pour caractériser la structure cristallographique et la composition chimique des nano-oxydes formés lors de trois séries d'expériences. Tout d'abord, l'implantation séquentielle d'ions Ti et O a été mise en œuvre. Un recuit ultérieur a révélé qu’il n’y avait pas de précipitation d'oxyde de titane jusqu’à des températures inférieures à 1000°C, mais la présence de nano-oxydes riches en chrome avec une structure hexagonale de type corundum, qui contiennent une certaine quantité de Ti à des températures suffisamment élevées. Ce n’est qu’après le recuit à 1100°C que des nano-oxydes d’un autre type à cœur enrichi en Ti et coquille enrichie en Cr ont également été observés. Deuxièmement, l'implantation séquentielle d’ions Y et O a entraîné la formation à 800°C de nano-oxydes probablement riches en yttrium. Le recuit à 1100°C a favorisé la croissance des particules identifiées comme étant des nano-oxydes d’yttrium avec une coquille enrichie en Cr. Enfin, une implantation ionique séquentielle de deux ions métalliques (Y et Ti) a été réalisée, suivie d'une implantation d’O. L'ordre d'implantation des ions métalliques s'est révélé crucial pour la précipitation de nano-oxydes lors du recuit ultérieur. Lors de la séquence avec une implantation de Ti en premier, une précipitation d'oxyde riche en chrome de structure corundum hexagonale a été observée, très similaire au cas de l'implantation d’ions Ti et O. En revanche, la séquence avec une implantation d’ions Y en premier a produit des nano-oxydes d'yttrium-titane qui possèdent une structure non identifiable. En résumé, l’étude a démontré la faisabilité de la formation de nano-oxydes de Y, Ti et (Y, Ti) par implantation ionique. La thèse présente la caractérisation détaillée de ces nano-oxydes, ainsi que certaines de leurs caractéristiques spécifiques, telles que la présence de relations d'orientation entre les nano-oxydes et la matrice FeCr, qui ont été observées même dans le cas de nano-oxydes de type corundum riches en Cr. Enfin, les résultats obtenus, combinées avec les données de la littérature, sont discutées pour une meilleure compréhension des mécanismes impliqués dans la formation des nano-oxydes dans les aciers ODS. / Oxide Dispersion Strengthened (ODS) steels, that is steels reinforced with a homogeneous distribution of (Y,Ti) oxide nano-particles, are advanced structural materials for nuclear applications. The oxide particles serve as point defect recombination centres and obstacles to dislocation motion thereby improving radiation resistance and high-temperature strength of these steels making them perfect candidate materials for future fusion and fission nuclear reactors. The conventional fabrication of ODS steels is achieved by mechanical alloying followed by thermomechanical heat treatments. This way of ODS steel production seems complicated to understand the physical mechanisms leading to the precipitation of nano-oxide particles. The kinetics of nanoparticle formation can be much better studied using an alternative technique of nanoparticle growth, namely Ion Beam Synthesis (IBS). This approach has many advantages including the precise control of experimental parameters and the ability to de-correlate various factors contributing to precipitation kinetics. A better knowledge gained in this way would be potentially helpful for optimization of ODS steel production routines. In the course of this PhD study, the IBS approach was applied to investigate the co-precipitation of metal (Y and/or Ti) and oxygen ions implanted into a model Fe-Cr alloy with the composition close to those typical for commercial ODS steels. Following the standard IBS schedule, consisting of ion implantation followed by high-temperature heat treatment, ions of Y, Ti and O at low energies were implanted into high-purity Fe10wt%Cr alloy samples at room temperature. The implanted samples were then annealed at various temperatures ranging from 600 to 1100°C to promote the precipitation of nano-oxide particles. A range of Transmission Electron Microscopy techniques were used to characterize the crystallographic structure and chemical composition of the nanoparticles. The study has been performed following three sets of experiments. First of all, the sequential implantation of Ti and O ions was implemented. Subsequent annealing at temperatures below 1000°C revealed that precipitation of titanium oxide was suppressed. Instead, chromium-rich nano-oxide particles with corundum hexagonal structure were found to precipitate. At sufficiently high temperatures these corundum particles were found to contain certain amount of Ti. Only after annealing at the highest temperature of 1100°C, particles of another type with Ti enriched core and Cr enriched shell were additionally fixed. Secondly, sequential Y and O ion implantation resulted in the formation of probable yttrium-rich oxides at 800°C. Annealing at 1100°C promoted their growth to larger sized yttria (Y₂O₃) particles with a Cr enriched shell. Finally, sequential ion implantation of both metal ions (Y and Ti) was performed, followed by O implantation. The order of metal ion implantation has been found to be crucial for subsequent oxide precipitation at the annealing stage. With the Ti implantation first in the sequence, the precipitation of corundum hexagonal chromium-rich oxide was observed, very similar to the case of Ti and O implantation. In contrast, implantation starting with Y produced yttrium-titanium oxide particles with unidentifiable structure. Summing up, the study has demonstrated the feasibility of the formation of Y, Ti and (Y,Ti) oxides by ion implantation. The thesis presents the detailed characterization of the nanoparticles, as well as the discovered specific features of precipitated particles, such as the presence of orientation relationships between the particles and the FeCr matrix, which was observed even for the case of Cr-rich corundum particles. Finally, the implications of the obtained results, in conjunction with the already known data from the existing literature, for the better understanding of the mechanisms involved in the formation of nano-oxide particles in ODS steels are discussed.

Page generated in 0.0442 seconds