Spelling suggestions: "subject:"nanobiosensor"" "subject:"nanobiosensors""
1 |
Desenvolvimento de um nanobiossensor para o monitoramento da qualidade ambiental no setor agrícolaBueno, Carolina de Castro 26 February 2013 (has links)
Made available in DSpace on 2016-06-02T19:19:56Z (GMT). No. of bitstreams: 1
BUENO_Carolina_2013.pdf: 2152454 bytes, checksum: fde5d928317281f1a9960dccbc2768a7 (MD5)
Previous issue date: 2013-02-26 / Financiadora de Estudos e Projetos / The elaboration of highly-sensitive and selective functional nanobiosensors has significant applications for purposes of resilience and conservation of natural resources, to contribute on projects aimed to pointing out degraded and contaminated areas (soil and water), as well as being a quality indicator. In the present work, a nanobiosensor has been developed based on the biomimicry of the action mechanism of the herbicides in plants coupled with the Atomic Force Microscopy (AFM) tools. To sense the herbicide molecule at very low concentrations, the technique of the sensor construction was based on chemical functionalization of the surfaces of the AFM probes and substrate in order to prioritize covalent bonds and to improve the molecules flexibility, as well as to achieve reproducibility and accurate results. The architecture and molecular design of the nanobiosensor were based on the molecular spatial arrangement, binding efficiency and localization, host-guest specificity, and its binding energies which were analyzed by Molecular Docking and Molecular Dynamics Simulation. The results were based on the adhesion force (carried out by force curves data) between the AFM probe functionalized with ACCase enzyme and the substrate functionalized with herbicides. The results indicate that the specific target molecule of agrochemical was efficient, when compared with others nonspecific agrochemicals. The difference between the values of specific recognition (diclofop) and nonspecific (imazaquin, metsulfuron and glyphosate) is, on average, 90%. This evidence validates the selectivity and specificity of the nanobiosensor. This work presents the first evidence of nanolevel detection of diclofop by AFM probes sensors. / A elaboração de nanobiossensores altamente sensíveis e com seletividade funcional tem aplicações importantes para fins de resiliência e conservação dos recursos naturais que podem contribuir em projetos que visam a apontar áreas degradadas e contaminadas (solo e água), além de ser um indicador de qualidade. No presente trabalho, um nanobiossensor foi desenvolvido com base na biomimética do mecanismo de ação dos herbicidas nas plantas, juntamente com as ferramentas de Microscopia de Força Atômica (AFM). Para detectar a molécula do herbicida diclofop, a técnica da construção do biossensor se baseou na funcionalização química das superfícies de cantilevers de AFM e do substrato, onde a molécula alvo foi fixada. Através da funcionalização química dos cantilevers e substratos priorizam-se as ligações químicas, aumentando a especificidade do nanossensor. O design e arquitetura molecular do nanobiossensor foram baseados no arranjo molecular espacial, na eficiência e localização da ligação, na especificidade de interações enzima-substrato e suas energias de ligação, as quais foram analisadas por Docking Molecular e Dinâmica Molecular. Os resultados foram baseados na força de adesão (obtidos através de curvas de força) entre a ponta do AFM funcionalizada com a molécula sensora (enzima ACCase) e do substrato funcionalizado com herbicidas. Os resultados indicam que a molécula alvo do agroquímico que inibiu especificamente essa enzima foi eficiente, quando comparado com outros herbicidas não inibidores. A diferença entre os valores de reconhecimento específico (diclofop) e não específico (imazaquin, metsulfuron e glifosato) foi, em média, 90%. Esta evidência comprova a seletividade e especificidade do nanobiossensor. Este trabalho apresenta a primeira evidência da detecção ao nível molecular do diclofop por sensores de ponta de AFM.
|
2 |
Análise da interação molecular proteína-herbicida através de simulação computacional: aplicação no desenvolvimento de nanobiossensores / Analysis of the protein-herbicide interactions through computational simulation: application on the development of nanobiosensorsOliveira, Guedmiller Souza de 29 April 2013 (has links)
Made available in DSpace on 2016-06-02T20:34:43Z (GMT). No. of bitstreams: 1
5238.pdf: 5294587 bytes, checksum: 025b13ac00d18b1830afac47325d6ffe (MD5)
Previous issue date: 2013-04-29 / Financiadora de Estudos e Projetos / In this study, our goal was evaluate the interactive forces between the Atomic force microscope tip (AFM tip) and an important enzyme responsible to fatty acids synthesis in all living beings (Acetyl CoA Carboxylase - fic biosensors to detect pesticides molecules used in agriculture. The AFM tip can be functionalized through its oxidation with spacer molecules. In order to simulate computationally this modified AFM tip that was called surface spacer-agent (SSA) using molecular dynamic (MD) simulations, the force field (FF) parameters had to be calculated. The FF parameters were obtained using quantum mechanical calculations and were implemented in an appropriate FF protocol. Three types of geometric molecular orientations of the ACCase were evaluated as a starting point to enzymatic immobilization, but only one was used to MD simulation. The criteria to define xyz orientation were basically based on the active sites from the ACCase enzyme are available to interact with molecules from the bulk and the surface contact area of the enzyme interacting with SSA ensure an strong interaction force to maintain the enzyme immobilized on the tip. Surface contact area, hydrogen bonds and protein stability were the parameters monitored during the MD trajectory as the enzymeherbicide interactions using a combination of molecular docking and molecular dynamics. The clusters formed using docking calculations in different regions along the ACCase enzyme were submitted to MD simulations in order to measure interactive energies of the system. / Neste estudo, o objetivo foi quantificar e analisar as forças de interação entre a ponta do microscópio de força atômica (AFM) modificada quimicamente com moléculas ligantes e uma importante enzima responsável pela síntese de ácidos graxos em todos os seres vivos, a Acetil CoA carboxilase - ACCase. Nosso objetivo é desenvolver biossensores específicos para a detecção de pesticidas usados na agricultura. A fim de simular computacionalmente esta superfície modificada, utilizando a metodologia de dinâmica molecular (MD), os parâmetros campo de força foram desenvolvidos e implementados no modelo computacional aqui proposto. Estes parâmetros foram obtidos utilizando cálculos de mecânica quântica e implementados no campo de força do programa de MD utilizado. Três tipos de orientações moleculares da ACCase foram avaliadas como ponto de partida para os cálculos de MD, porém, apenas uma posição foi utilizada para a simulação. Os critérios para definir a orientação espacial da enzima na superfície tiveram com base a localização dos sítios ativos da enzima e a área de contato da enzima com a superfície funcionalizada. Este último parâmetro foi levado conta com a intenção de assegurar uma força de interação forte o suficiente para manter a enzima imobilizada na ponta sem que haja o despreendimento da mesma devido a fracas interações. Superfície de contacto, ligações de hidrogênio e estabilidade estrutural da proteína foram os parâmetros avaliados e monitorados. As regiões da enzima expostas para interação com as moléculas do bulk foram avaliadas utilizando uma combinação de docking molecular e dinâmica molecular. Os clusters formados dos cálculos de docking em diferentes regiões da enzima ACCase foram submetidos a simulação por MD para o cálculo das energias envolvidas no sistema.
|
3 |
Desenvolvimento da microscopia de força química usando modelagem molecularAmarante, Adriano Moraes 19 March 2013 (has links)
Made available in DSpace on 2016-06-02T19:19:55Z (GMT). No. of bitstreams: 1
AMARANTE_Adriano_2013.pdf: 11925080 bytes, checksum: 6de5e4ba7ae233d30b78c7f1d927740a (MD5)
Previous issue date: 2013-03-19 / Universidade Federal de Sao Carlos / In this work was developed a prototype of a new nanobiosensor with molecular specificity through a study of theoretical models of Chemical Force Microscope. For the sensing were used molecular modeling techniques as well as experimental models of the functionalized Atomic Force Microscope tip with the Acetil co-A Carboxylase (ACC) attached. Specific and non-specific inhibitors were used to evaluate substrate-enzyme interactions. The nanobiosensor investigates specific enzymatic inhibition characteristics of the ACC enzyme through the herbicide Diclofop by reversing this process applying a force in a determined direction. The force is theoretically calculated by using molecular dynamic techniques associated to the adhesion force experimentally obtained. Theoretical and experimental questions involving nanobiosensors of AFM tips still obscure until now, such as, the number of functional enzymes attached on the AFM tip, the number of the active sites available to interact after immobilization process, the consequences of the enzyme immobilization as well as the substrate and theoretical adhesion between AFM tip and substrate were analyzed here. / Este trabalho teve como objetivo principal desenvolver o protótipo de um novo nanobiossensor de alta especificidade por intermédio do estudo e desenvolvimento de modelos teóricos específicos para a Microscopia de Força Química (MFQ). Para o sensoriamento foram utilizadas técnicas de Modelagem Molecular Computacional (MMC) e resultados experimentais de MFQ, do qual a ponta do Microscópio de Força Atômica (AFM, do inglês Atomic Force Microscopy) foi funcionalizada com enzimas Acetil-coA Carboxilase (ACC). O nanobiossensor foi utilizado para detectar especificamente substratos de herbicidas específicos e não-específicos. O nanobiossensor explora as características de inibição enzimática específica da enzima ACC pelo herbicida Diclofop revertendo esse processo aplicando-se uma força numa determinada direção. Essa força foi calculada teoricamente por intermédio de cálculos de técnicas de Dinâmica Molecular e associada à força de adesão experimental. Os resultados experimentais validaram os modelos teóricos de forma inequívoca. Questões teóricas e experimentais envolvendo nanobiossensores de ponta de AFM não respondidas até o momento (número de enzimas úteis na ponta do AFM que podem interagir com o substrato, o número de sítios ativos disponíveis, consequências da imobilização das enzimas e do substrato, força de adesão teórica entre a ponta do AFM e o substrato de herbicidas, etc.) foram solucionadas neste trabalho.
|
Page generated in 0.4059 seconds