Spelling suggestions: "subject:"nanocarga"" "subject:"nanocarrier""
1 |
Heteroatoms Doped Nanocarbon for SupercapacitorsJanuary 2020 (has links)
abstract: This dissertation describes the synthesis and study of porous nanocarbon and further treatment by introducing nitrogen and oxygen groups on nanocarbon, which can be used as electrodes for energy storage (supercapacitor). Electron microscopy is used to make nanoscale characterization. ZnO nanowires are used as the template of the porous nanocarbon, and nitrogen doping and oxidation treatment can help further increase the capacitive performance of the nanocarbon.
The first part of this thesis focuses on the synthesis of ZnO nanowires. Uniform ZnO nanowires with ~30 nm in width are produced at 1100℃ in a tube furnace with flowing gases (N2: 500 sccm; O2: 15 sccm). The temperature control is one of the most important parameters for making thin and ultra-long ZnO nanowires.
The second part of the thesis is about the synthesis of nanocarbons. Ultrapure ethanol is used as the carbon source to make carbonaceous deposition on ZnO nanowires. The thickness of the nanocarbons can be controlled by reaction temperature and reaction time. When the reaction time was controlled around 1h, the carbonaceous materials coating the ZnO nanowires become very thin. Then by flowing (1000 sccm) hydrogen at 750℃ through the reaction tube the ZnO nanowires are removed due to reduction and evaporation. Electrochemical evaluation of the produced nanocarbons shows that the nanocarbons possess very high specific surface area (>1400 m2/g) and a capacitance as high as 180 F/g at 10A/g in 6M KOH).
The third part of the thesis is the treatment of the as-synthesized nanocarbons to further increase capacitance. NH3 was used as the nitrogen source to react with nanocarbons at 700℃ to incorporate nitrogen group. Nitric acid (HNO3) is used as the oxidant to introduce oxygen groups. After proper nitrogen doping, the nitrogen doped nanocarbons can show high specific capacitance of 260 F/g at 1A/g in 6M KOH. After further oxidation treatment, the capacitance of the oxidized N-doped nanocarbons increased to 320 F/g at 1A/g in 6M KOH. / Dissertation/Thesis / Masters Thesis Materials Science and Engineering 2020
|
2 |
Nanocarbon Based Chemiresistive Water Quality SensorsZubiarrain Laserna, Ana January 2019 (has links)
Failure to monitor the quality of drinking water can have devastating consequences. The development and implementation of sensing technology can be a crucial aspect of water quality control strategies. Chemiresistive sensors can be installed at any point of the distribution system and can provide real-time data on the levels of different water quality parameters. These sensors work by detecting changes in the conducting properties of a transducing element, induced by interactions with the analyte. Nanocarbon films have attracted interest as possible transducing materials because of their similarities to graphene, a two-dimensional material known for its exceptional electron transport properties. This thesis explores the fabrication and sensing performance of few layer graphene (FLG) and graphene-like carbon (GLC) films. The FLG sensors were used to detect copper ions in water, while the GLC sensors were used to monitor the concentration of free chlorine. The films were functionalized to improve selectivity and showed noticeable changes in their conducting properties as a result of charge transfer between them and the analyte. These changes were quantified by probing the sensors with a constant voltage and they were found to be dependent on the concentration of the analyte over a wide dynamic range. Overall, the work presented in this thesis suggests that, by tuning the selectivity of the films, nanocarbon based chemiresistive sensors can be a universal solution to water quality monitoring. / Thesis / Master of Science (MSc)
|
3 |
HIGH-PERFORMANCE ALUMINUM COMPOSITES: STRUCTURAL, MECHANICAL, AND DAMPING BEHAVIOR OF ALUMINUM ENHANCED BY CARBON NANOPARTICLESRativa Parada, Wilson Emilio 01 August 2024 (has links) (PDF)
Aluminum matrix composites perform a major role in developing novelty materials with improved mechanical performance for applications in the automotive, electronics, construction, and aerospace industries. However, the most common materials utilized as reinforcement in these composites present difficulties of dispersion at high volume fractions, structural damage, and undesirable reactions with the aluminum matrix. In addition, aluminum composites can also exhibit a reduction in plastic deformation and an increase in density compared to the base matrix, which has limited their massive implementation. This has opened the search for alternative reinforcement materials. Carbon allotropes present a high potential to overcome the limitations of aluminum matrix composites owing to their structural, mechanical, and electrical properties as well as chemical and thermal stability. In this research, we aimed to evaluate the influence of small fractions of carbon allotropes (activated nanocarbon and graphene nanoplatelets) on the structures and properties of three different aluminum matrices (pure aluminum, 6061 alloy, and 2024 alloy). First, the characteristics, manufacturing methods, and state of the art of metal matrix composites and carbon allotropes are reviewed. Then, the experimental investigation for the aluminum composites reinforced with graphene nanoplatelets and activated nanocarbon obtained through powder metallurgy, induction casting, and heat treatment is presented. The microstructural study showed the degree of uniform distribution of the carbon nanoparticles in the metal matrix, which revealed the morphology of the particulate fillers, the changes in the matrices, and the characteristics at the interface of the composites during several stages of the manufacturing processes. The mechanical characterization presented enhancements of yield strength, ultimate strength, and hardness after the introduction of activated nanocarbon and graphene nanoplatelets as a function of the volume fractions. The materials followed different paths of strengthening mechanisms depending on the matrix and manufacturing techniques. Similarly, the materials showed variable plastic deformation before failure and damping behavior, which were highly influenced by the manufacturing method, aluminum matrix, heat treatment, and temperature. Therefore, this work demonstrates the potential of graphene nanoplatelets and activated nanocarbon to be considered ideal reinforcements for aluminum matrix composites compared to common ceramic materials. The carbonaceous materials exhibited excellent distribution and interface, leading to a general improvement of the properties of the composites for both solid and liquid manufacturing methods. It also provides a better understanding of the influence of a small volume fraction of carbon nanoparticle reinforcements, different aluminum matrices, and manufacturing techniques on the performance of aluminum matrix composites. The findings of this study can be tailored to obtain aluminum matrix composites for specific engineering applications that require higher specific strength and improved damping behavior.
|
4 |
Electrochemical studies of carbon-based materialsWisetsuwannaphum, Sirikarn January 2014 (has links)
Graphene, as a recently discovered carbon allotrope, possesses with it many outstanding properties ranging from high electrical conductivity to great mechanical strength. Single layer graphene can be prepared by mechanical cleavage of graphite or by a more sophisticated method, CVD. However, the scale-up process for these preparation techniques is still unconvincing. Solution-processed graphene from exfoliation of graphite oxide on the other hand provides an alternative prospect resulting in the formation of graphene nanoplatelets (GNPs), which can be readily manipulated to tailor-suit various application demands. The main aim of the thesis is to explore the possibility and availability of this versatile method to produce graphene nanoplatelet and its composites with good all-round performance in energy and bioanalytical applications. A range of physical and chemical characterisation techniques were utilised including SEM, TEM, AFM, XPS, XRD, DLS, FTIR, Raman and UV-Vis spectroscopy in order to investigate the structural and chemical information of the graphene-based materials prepared. Functionalisation of graphene oxide with polyelectrolyte polymer could facilitate deposition of platinum nanoparticles in the formation of Pt-GNPs composites. The resultant composite was employed for bioanalytical application in the detection of an important neurotransmitter, glutamate, based on glutamate oxidase enzyme. The performance of Pt-GNPs based glutamate sensor exhibited enhanced sensitivity and prolonged stability compared to the sensors based on Pt decorated diamond or glassy carbon electrodes. The significant interfering effect from concomitant electrochemically active biological compounds associated with Pt-GNPs electrode however could be alleviated via opting for Prussian blue deposited GNPs electrode instead. The oppositely charged Pt-GNPs due to different functionalising polymers were also subject to self-assembly, which was enabled by the electrostatic interaction of the opposite charges of Pt-GNPs. The self-assembled film showed enhanced mechanical stability than the conventional drop-casted film and provided reasonably good activity towards oxidation of hydrogen peroxide. Three-component composite of graphene, nanodiamond and polyaniline was prepared via in-situ polymerisation for usage as an electrode material in electrochemical capacitors ("supercapacitors"). The addition of graphene was shown to significantly enhance specific capacitance while nanodiamond could improve the stability of the electrode by strengthening the polymer core. Another approach to produce a supercapacitor was via electrodeposition of nickel and cobalt hydroxides on graphene oxide film corporated with bicarbonate salt. The film was then subject to thermal reduction of GO and expansion of graphene layers within the film was observed. This leavening process enhanced the surface area of graphene film and thus the higher specific capacitance was obtained. The decoration of nickel and cobalt hydroxides onto the film also boosted the specific capacitance further however the poor cycling stability of the heated film still remained an issue. Graphene nanoplatelets were also used as a support for electrodeposition of Pt nanoparticles for methanol oxidation in acidic media. The preferential phase of the Pt deposited and large surface area of graphene in comparison to other carbon supports studied led to good catalytic activity being observed.
|
5 |
Surface Modifications of Nanocarbon Materials for Electrochemical CapacitorsAkter, Tahmina 14 December 2010 (has links)
Multi-walled carbon nanotubes (MWCNTs) were successfully coated with two different pseudocapacitive polyoxometalates (POMs) (SiMo12O40-4 (SiMo12) and PMo12O40-3 (PMo12)) via “Layer-by-Layer” deposition. Even with merely a “single-layer” of POM, the modified nanotubes exhibited more than 2X increase in capacitance compared with that of bare nanotubes. To further improve their electrochemical performances, the deposition sequence of the POM layers was adjusted to form “alternate layer” coating to modify MWCNT. A synergistic effect on the capacitance and kinetics was observed with the alternate layer coatings. X-ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM) also proved the successful coating of POMs on MWCNTs. The potential-pH relationship provided important insights in terms of the deposition mechanism and suggested that the bottom layer close to the electrode substrate was the dominating layer in alternate layer coated MWCNT electrodes.
|
6 |
Surface Modifications of Nanocarbon Materials for Electrochemical CapacitorsAkter, Tahmina 14 December 2010 (has links)
Multi-walled carbon nanotubes (MWCNTs) were successfully coated with two different pseudocapacitive polyoxometalates (POMs) (SiMo12O40-4 (SiMo12) and PMo12O40-3 (PMo12)) via “Layer-by-Layer” deposition. Even with merely a “single-layer” of POM, the modified nanotubes exhibited more than 2X increase in capacitance compared with that of bare nanotubes. To further improve their electrochemical performances, the deposition sequence of the POM layers was adjusted to form “alternate layer” coating to modify MWCNT. A synergistic effect on the capacitance and kinetics was observed with the alternate layer coatings. X-ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM) also proved the successful coating of POMs on MWCNTs. The potential-pH relationship provided important insights in terms of the deposition mechanism and suggested that the bottom layer close to the electrode substrate was the dominating layer in alternate layer coated MWCNT electrodes.
|
7 |
Studies on π-interactions in liquid phase separations / 液相分離におけるπ相互作用に関する研究Kanao, Eisuke 27 July 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22701号 / 工博第4748号 / 新制||工||1742(附属図書館) / 京都大学大学院工学研究科材料化学専攻 / (主査)教授 大塚 浩二, 教授 松原 誠二郎, 教授 秋吉 一成 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
8 |
Toward High Performance Nanocarbon FibersPfau, Michaela R 01 March 2016 (has links) (PDF)
High performance carbon fibers (CFs) have been a commercially available since their commercial boom in the 1970s, and are generally produced via carbonization of poly (acrylonitrile) (PAN). More recently, carbon nanomaterials like graphene and carbon nanotubes (CNTs) have been discovered and have shown excellent mechanical, thermal, and electrical properties due to their sp2 carbon repeating structure. Graphene and CNTs can both be organized into macroscopic fibers using a number of different techniques, resulting in fibers with promising mechanical performance that can be readily multifunctionalized. In some cases, the two materials have been combined, and the resulting hybrid fibers have been shown to display synergistically enhanced mechanical properties. The incredible intrinsic properties of graphene and CNTs has never been fully realized in their fiber assemblies, so part of the aim of this work is to discover methods to improve upon the performance of nanocarbon based fibers. Carbon nanomaterials can be difficult to work with because of the difficulty in processing them into commercially viable materials, and the challenges associated with scalable production techniques. So, the main goal of this work is to prepare hybrid graphene and CNT based fibers with optimal mechanical performance using simple, cost-effective methods.
|
9 |
STUDY ON METAL-NANOCARBON COMPOSITES: PROCESSING, CHARACTERIZATION, AND PROPERTIESZhao, Yao January 2019 (has links)
Introduction of nanocarbons, such as graphene and carbon nanotubes, to metal matrices, may enhance the electrical and thermal transport, mechanical properties and some other properties of the composite materials. However, uniform distribution of the nanocarbon phase in the matrix material and manufacturing the composites in large scale can be challenging using traditional mixing methods. In this study, a facile method to fabricate metal-nanocarbon composites was developed. Firstly, copper (Cu)-polydopamine (PDA) composite was fabricated by coating Cu powders with the bioinspired PDA polymer, which was then converted to a graphite-like structure during the subsequent sintering. In terms of the properties, compared to the pure Cu sample, the Cu-PDA composite showed increased electrical and thermal conductivity, higher microindentation hardness, and enhanced wear resistance. These findings suggest the inclusion of nanocarbon phase converted from PDA can simultaneously improve the electrical, thermal, and mechanical properties of sintered Cu materials. Effect of sintering temperature and coating time (carbon content) on the microstructure and properties of the composites were discussed. Secondly, aluminum (Al)-copper nanoparticles (CuNP)-PDA composite was fabricated with a new method, to improve the sintering behavior of Al for serving as feedstock materials of additive manufacturing (AM). CuNPs were synthesized by directly reducing Cu ions in the aqueous solution. With the assistance of the PDA coating, the CuNPs can be better attached to the Al powder surfaces. The composite samples showed better sintering behavior by exhibiting higher electrical conductivities and mechanical properties, which may be due to local nanosized alloying phases generation after sintering. These findings illustrated that the composite powders could be a good candidate feedstock material for AM. The structural characterizations of the metal nanocarbon powders and the composites were performed with SEM, TEM, XRD and Raman spectroscopy. With the help of these techniques, the formation of the targeted structures in the composite was studied, including graphite-like structures of cPDA and nano alloying phases in Al-CuNP-PDA composites. Apart from the composite materials fabrication, a novel and facile manufacturing method based on metal powders was also developed. In this study, a new type of Cu- binder paste was formed, which not only can be utilized with direct ink/paste printing but also can be casted into a soft silicone rubber mold. Three-dimensional (3D) metal parts can then be subsequently obtained after sintering. Comparing to other additive manufacturing methods that involve high energy laser or electron beams, this new approach does not require expensive facilities, and it is less time-consuming. Moreover, the silicone rubber molds can be easily removed and reused. In summary, the composite powders fabricated in this study can be utilized as feedstock materials for additive manufacturing of metals and alloys. The new soft-mold casting could be used as an alternative method to manufacture 3D metal components. Therefore, the materials and the processing methods developed in the current study could have broad applications in various metal industries. / Mechanical Engineering
|
10 |
Processing and Properties of Particulate Reinforced Carbon Matrix CompositesShen, Jacklyn Dana 27 October 2022 (has links)
Carbonization of biomass is a type of pyrolysis that allows for the formation of byproducts that have applications in many other industries [1]. In the field of materials science concerned with environmental impact intersecting with desirable material properties and performance, the process of carbonization in particular with commonplace biomass such as food waste is of great interest. In this thesis, pistachio shell was used as the organic biomass of choice for carbonization, and reinforcement was provided by titanium powder. These two materials were milled together at two different compositions and milling times. Experimental conditions consisted of replicates of three bulk samples made from uniaxially pressed powder mixtures heat treated from 800 °C up to 1200 °C in increments of 100 °C. Heat treatment occurred in a tube furnace with a heating rate of 5 °C/min up to the heat treatment temperature, holding the temperature for 1 hour, then ramping back down to room temperature, all in an inert atmosphere. XRD was performed on heat treated samples before polishing, while optical microscopy and SEM were performed after mounting and polishing. TGA was performed on the milled powders, while hardness was performed on the heat treated bulk samples after mounting and polishing. Results obtained suggested that increasing heat treatment temperature and milling time decreased carbon matrix porosity. In addition, greater amounts of titanium seemed to result in increased porosity. However, at increased temperature, more surface cracking was observed, leading to the conclusion that an excessively high temperature is detrimental to mechanical properties. Finally, rutile TiO2 was formed as a result of the heat treatment process. In considering environmental impact, cost, and mechanical properties, a balance must be maintained between higher temperature processing, duration, milling time, and porosity present due to these factors. Future work includes further investigations into processing parameters and characterization such as XPS and abrasion testing. / Master of Science / Carbonization of organic materials such as wood or nut shells can be explained in short as a decomposition that occurs when those materials are heated up without allowing them access to oxygen as in a normal combustion like a fire. Because of that, carbonization can produce useful products and materials of interest to many. Adding titanium to pistachio shell powder, performing compaction and carbonization, then further heating up those samples, resulted in composite materials consisting of mostly carbon char and particles inside that improve the properties. After testing multiple experimental conditions and analyzing them using equipment such as X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA), optical microscopes, Scanning Electron Microscopy (SEM)/Energy Dispersive Spectroscopy (EDS), and a hardness tester, some trends in properties and structure were observed. Generally, increasing heat treatment temperature and milling time will reduce porosity in the matrix. On the other hand, decreasing amount of Ti powder added seems to reduce porosity. However, too high of a heat treatment temperature seems to have a detrimental effect on the part manufactured (i.e. surface cracking). In addition, considering processing costs and time costs could discourage one from using a very high temperature to heat treat these samples. Therefore, it is important to balance amount of energy used to heat treat, time spent, and resulting porosity of the final product for its applications. Future work should be done to further determine the effects of processing parameters by making more samples to test the properties of. Other characterization techniques like X-Ray Photoelectron Spectroscopy (XPS) and abrasion testing could be good to determine the exact makeup of the particles in the composite as well as see the sample's performance in its intended application (i.e. brake pads).
|
Page generated in 0.051 seconds