121 |
Electrochemical synthesis of CeO2 and CeO2/montmorillonite nanocomposites.Wang, Qi 12 1900 (has links)
Nanocrystalline cerium oxide thin films on metal and semiconductor substrates have been fabricated with a novel electrodeposition approach - anodic oxidation. X-ray diffraction analysis indicated that as-produced cerium oxide films are characteristic face-centered cubic fluorite structure with 5 ~ 20 nm crystal sizes. X-ray photoelectron spectroscopy study probes the non-stoichiometry property of as-produced films. Raman spectroscopy and Scanning Electron Microscopy have been applied to analyze the films as well. Deposition mode, current density, reaction temperature and pH have also been investigated and the deposition condition has been optimized for preferred oriented film formation: galvanostatic deposition with current density of -0.06 mA/cm2, T > 50oC and 7 < pH < 10. Generally, potentiostatic deposition results in random structured cerium oxide films. Sintering of potentiostatic deposited cerium oxide films leads to crystal growth and reach nearly full density at 1100oC. It is demonstrated that in-air heating favors the 1:2 stoichiometry of CeO2. Nanocrystalline cerium oxide powders (4 ~ 10 nm) have been produced with anodic electrochemical synthesis. X-ray diffraction and Raman spectroscopy were employed to investigate lattice expansion phenomenon related to the nanoscale cerium oxide particles. The pH of reaction solution plays an important role in electrochemical synthesis of cerium oxide films and powder. Cyclic voltammetry and rotation disk electrode voltammetry have been used to study the reaction mechanisms. The results indicate that the film deposition and powder formation follow different reaction schemes. Ce(III)-L complexation is a reversible process, Ce3+ at medium basic pH region (7~10) is electrochemically oxidized to and then CeO2 film is deposited on the substrate. CE mechanism is suggested to be involved in the formation of films, free Ce3+ species is coordinated with OH- at high basic pH region (>10) to Ce2O3 immediately prior to electrochemically oxidation Ce2O3 to CeO2. CeO2 / montmorillonite nanocomposites were electrochemically produced. X-ray diffraction and Raman spectroscopy illustrate the retaining of FCC structure for cerium oxide. Fourier Transform Infrared Spectroscopy and Differential Scanning Calorimetry of composites indicate the insertion of montmorillonite platelets into the structural matrix of cerium oxide. Sintering study of the nanocomposites demonstrates that low concentration of montmorillonite platelet coordination into cerium oxide matrix increases crystal growth rate whereas high concentration of montmoillonite in nanocomposites retards the increase of crystallite size during the densification process.
|
122 |
Mineralization Potential of Electrospun PDO-nHA-Fibrinogen Scaffolds Intended for Cleft Palate RepairRodriguez, Isaac 26 April 2010 (has links)
The overall goal of this study was to identify mineralized scaffolds which can serve as potential alternatives to bone graft substitutes intended for cleft palate repair. The aim of this preliminary study was to evaluate the role of fibrinogen (Fg) and nano-hydroxyapatite (nHA) in enhancing mineralization potential of polydioxanone (PDO) electrospun scaffolds. Scaffolds were fabricated by blending PDO:nHA:Fg in the following weight ratios: 100:0:0, 50:25:25, 50:50:0, 50:0:50, 0:0:100 and 0:50:50. Scaffolds were immersed in different simulated body fluids for 5 and 14 days to induce mineralization. The inclusion of fibrinogen induced sheet-like mineralization while individual fiber mineralization was noticed in its absence. Modified protocols of alizarin red staining and burn-out test were developed to quantify mineral content of scaffolds. After mineralization, 50:50:0 scaffolds were still porous and contained the most mineral. 50:25:25 scaffolds had the highest mineralization potential but lacked porosity. Therefore, it can be anticipated that these mineralized organic-inorganic electrospun scaffolds will induce bone formation.
|
123 |
EXTRAÇÃO, MODIFICAÇÃO E APLICAÇÃO DA FIBRA DO BAGAÇO DE MANDIOCA (Manihot esculenta Crantz)Travalini, Ana Paula 13 February 2015 (has links)
Made available in DSpace on 2017-07-21T18:53:01Z (GMT). No. of bitstreams: 1
Ana Paula Travalini.pdf: 3027594 bytes, checksum: bce498a3a112f4874728442be07d1f8d (MD5)
Previous issue date: 2015-02-13 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Cassava (Manihot esculenta Crantz) is a crop with high production yields in Brazil, and with processing, it generates large amounts of a high-moist solid byproduct that is of difficult destination. This byproduct known as bagasse or massa by the cassava starch producers shows high levels of starch and fiber. Thus, the aim of this study was to extract, characterize and modify the fiber cassava bagasse (FBM) for applying in composites, besides getting nanocrystalline cellulose. In order to remove residual starch form the pulp an enzymatic hydrolysis was carried out, leaving only the cassava fiber, i.e., cellulose, hemicellulose and lignin. Selected analyses were performed to confirm complete removal of starch such as high performance liquid chromatography (HPLC), thermogravimetry (TG), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and color analysis. To incorporate the fiber in a polymeric matrix, we carried out a chemical modification by acetylation of the fibers, making them more hydrophobic, facilitating achievement of composites. After modification, mid-infrared spectroscopic analysis (FTIR) was performed to verify the substitution of hydroxyl groups. The composite (5, 10 and 20 % fiber) were obtained in a twin screw extruder, followed by injection. The test pieces were submitted to tensile test and flexure, SEM, DSC and color analysis, and they presented homogeneous mixture. The nanocrystalline cellulose (NCC) was developed from three bleaching stages of fiber for higher removal of lignin, followed by acid hydrolysis, dialysis and centrifugation, and subsequent analyses were performed in zeta potential to verify size reduction of cellulose particles, and morphological analysis (SEM). The NCC obtained from FBM was compared with NCC obtained from microcrystalline cellulose (MCC). The CNCs remained suspension stable and low particle sizes, while the CNC-FBMB resulted in a high degree of crystallinity. / A mandioca (Manihot esculenta Crantz) consiste em uma planta com altos índices de produção no Brasil, sendo que com o processamento, gera-se uma grande quantidade de um subproduto fibroso úmido que tem problemas quanto a destinação. Este subproduto, conhecido na agroindústria como bagaço ou massa, apresenta altos teores de amido e fibra. Sendo assim, o objetivo deste estudo foi extrair, caracterizar e modificar quimicamente a fibra do bagaço de mandioca (FBM), aplicá-la na obtenção de compósitos, além de utilizá-la para obter celulose nanocristalina. Com o intuito de remover o amido residual do bagaço, foi realizada uma hidrólise enzimática, restando apenas a fibra de mandioca composta por celulose, hemicelulose e lignina. Diversas análises foram realizadas a fim de comprovar a completa remoção do amido, como cromatografia líquida de alta eficiência (CLAE), termogravimetria (TG), calorimetria exploratória diferencial (DSC), microscopia eletrônica de varredura (MEV) e análise de cor. Para incorporar as fibras em uma matriz polimérica, optou-se por realizar uma modificação química por acetilação das fibras, tornando-as mais hidrofóbicas, facilitando a obtenção de compósitos. Após a modificação realizou-se análise em espectroscopia na região do infravermelho médio (FTIR) para verificar a substituição dos grupos hidroxila. Os compósitos (5, 10 e 20 % de fibra) foram obtidos em extrusora dupla rosca, seguida por injeção. Os corpos de prova foram submetidos a ensaios mecânicos de tração e flexão, MEV, DSC e análise de cor, sendo que os mesmos apresentaram uma mistura homogênea. A celulose nanocristalina (CNC) foi desenvolvida a partir de três etapas de branqueamento da fibra para maior remoção da lignina, seguido por hidrólise ácida, centrifugação e diálise, sendo posteriormente realizadas análises em potencial zeta para verificar a redução do tamanho das partículas de celulose, além de análises morfológicas (MEV). A CNC obtida a partir da FBM foi comparada a CNC obtida a partir da celulose microcristalina (CMC). As CNCs apresentaram estabilidade de suspensão e baixos tamanhos de partículas, enquanto que a CNC-FBMB resultou em alto grau de cristalinidade.
|
124 |
OTIMIZAÇÃO DO MÉTODO DE EXTRAÇÃO DE CELULOSE NANOCRISTALINA PARA VALORIZAÇÃO DE RESÍDUOS LIGNOCELULÓSICOSDitzel, Fernanda Izabelle 08 July 2016 (has links)
Made available in DSpace on 2017-07-21T20:43:49Z (GMT). No. of bitstreams: 1
Fernanda Izabelle Ditzel.pdf: 4089923 bytes, checksum: 47704f1f43b93ae17b2605e30dc4d650 (MD5)
Previous issue date: 2016-07-08 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Nanocrystalline cellulose is an aqueous suspension containing whiskers which have high crystallinity and high specific surface area. This material can be obtained from lignocellulosic fibers by means of an acid hydrolysis process. The characteristics of the nanocrystalline cellulose depends of the hydrolysis conditions, which may vary according to the following parameters: concentration of acid, fiber to acid ratio, temperature and reaction time. Therefore, the influence of these parameters was evaluated in a study conducted for the microcrystalline cellulose. From this, optimized conditions were determinated for obtaining nanocrystalline cellulose suspensions with maximum yield or high crystallinity index or high zeta potential. The nanocrystalline cellulose suspension which showed maximum yield was selected for the surface modification with a cationic surfactant and posteriorly submitted to the spray-drying process. The produced, microparticles are suitable for use in the composite processing by extrusion. Based on the optimized hydrolysis conditions, residues of pine wood and corncob were submitted to the process of nanocrystalline cellulose extraction. For this, it was necessary to carry out a procedure for the isolation of cellulose, which consisted of acetosolv pulping and bleaching. The results showed that was possible to extract nanocrystalline cellulose with suitable characteristics for use in industrial applications. Compared with the commercial microcrystalline cellulose, the residues provided a yield approximately 76.0% lower in the nanocellulose extraction. Therefore, further studies are necessary to improve this characteristic. Finally, the black liquor from acetosolv pulping was used for the lignin recovery. It is suggested that lignin can be used economically for the production of aromatic compounds. / A celulose nanocristalina é uma suspensão aquosa contendo whiskers, os quais possuem elevadas cristalinidade e área superficial específica. Esta pode ser obtida a partir de fibras lignocelulósicas por meio de um processo de hidrólise ácida. As características da celulose nanocristalina dependem das condições de hidrólise, as quais podem variar de acordo com os seguintes parâmetros: concentração de ácido, razão fibra/ácido, temperatura e tempo de reação. Desta forma, a influência destes parâmetros foi avaliada em um estudo realizado para a celulose microcristalina. A partir disto, foram determinadas condições otimizadas para a obtenção de suspensões de celulose nanocristalina com máximo rendimento ou com elevado índice de cristalinidade ou com superior valor de potencial zeta. A suspensão de celulose nanocristalina que apresentou máximo rendimento foi selecionada para a modificação superficial com um surfactante catiônico e posterior secagem por atomização. Com isso, foram produzidas micropartículas para aplicação no processamento por extrusão de compósitos. Com base nas condições otimizadas de hidrólise, resíduos de madeira de pinus e de sabugo de milho foram submetidos ao processo de extração de celulose nanocristalina. Para isto, foi necessária a realização de um procedimento para o isolamento de celulose, o qual consistiu dos pré-tratamentos de polpação acetosolv e de branqueamento. A análise dos resultados mostrou que, a partir dos resíduos considerados, foi possível extrair celulose nanocristalina com características adequadas para uso em aplicações industriais. Contudo, em comparação com a celulose microcristalina comercial, os resíduos proporcionaram um rendimento aproximadamente 76,0 % inferior na extração de nanocelulose. Desta forma, estudos adicionais são necessários para a melhoria desta característica. Por fim, o licor negro proveniente da polpação acetosolv foi utilizado para a recuperação de lignina. Sugere-se que a lignina possa ser utilizada economicamente para a produção de compostos aromáticos.
|
125 |
Caractérisation et modélisation de matériaux magnétiques en hautes températures en vue d’une application au filtrage CEM. / Characterization and modeling of magnetic materials at high temperatures for an EMC filter application.Chailloux, Thibaut 01 December 2011 (has links)
Un enjeu majeur de l’industrie aéronautique de demain est de concevoir et développer un avion « plus » électrique. En effet, sur un avion de ligne, les principaux systèmes utilisent des types d'énergies différents tels que l'énergie hydraulique ou pneumatique. La tendance actuelle est à la conversion de ces systèmes à l'énergie électrique car elle présente de nombreux avantages et permettrait des économies de masse, d’énergie, et de coûts de maintenance. Avec l’augmentation croissante des systèmes électriques dans l’avion se posent par conséquent des problèmes d’interférences et de compatibilité électromagnétique entre ces différents dispositifs. Par ailleurs ces systèmes électriques sont soumis à des conditions de travail très sévères, notamment des températures extrêmes. Dans le cadre du projet FEMINA (Filtrage Electromagnétiques et Matériaux pour l’INtégration en Aéronautique), l’objectif de notre équipe était d’étudier un filtre électrique soumis à des conditions de températures extrêmes. Ce filtre composé d’éléments passifs (condensateurs et inductances) est destiné à éliminer les interférences provoquées par le convertisseur électrique placé à proximité de la source d’énergie et de chaleur (le propulseur). Dans le cadre de mes travaux de thèse, je me suis intéressé plus particulièrement à l’effet de la température sur le comportement des inductances au travers des matériaux magnétiques qui les composent. J’ai ainsi déterminé les matériaux magnétiques que j’estimais capable de remplir leur rôle de filtrage en hautes températures, puis j’ai élaboré un modèle de comportement magnétique dynamique, tenant compte de l’effet de peau et de l’effet de la température et enfin j’ai testé ce nouveau modèle en l’incluant dans un simulateur circuit, afin de modéliser un filtre de mode commun répondant au cahier des charges de nos partenaires industriels. / A major challenge in the aviation industry is to design and develop “more” electric aircraft. Indeed, the main systems use different types of energy such as hydraulic or pneumatic energy. The current trend is to convert these systems to electric power because it has many advantages and would allow economies of mass, energy and maintenance costs. With the increasing electrical systems in the aircraft, arise problems of interference and electromagnetic compatibility between these systems. Moreover, these power systems are subjected to severe working conditions, including extreme temperatures. As part of the FEMINA project (Filtrage Electromagnétiques et Matériaux pour l‟INtégration en Aéronautique), the goal of our team was to study an EMC filter subjected to extreme temperature conditions. This filter is composed of passive elements (capacitors and inductors) and designed to remove interference caused by electrical converter located close to the source of energy and heat (the propeller). As part of my thesis work, I focused on the effect of temperature on the behavior of inductors through the magnetic materials that compose them. I have thus determined the magnetic materials that I felt able to fulfill their role at high temperatures, then I developed a dynamic model of magnetic behavior, taking into account the skin effect and the effect of temperature and finally I tested this new model by including it in a circuit simulator to model a common mode filter that meets the specifications of our industrial partners.
|
126 |
Avaliação da biocompatibilidade de nanohidroxiapatitas no reparo ósseo de tíbias de coelhosGasperini, Flávio Marcos January 2010 (has links)
Submitted by Verônica Esteves (vevenesteves@gmail.com) on 2017-09-28T19:33:45Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertação Flávio Gasperini.pdf: 2318649 bytes, checksum: af9486980e507779dbd5975709e84b4d (MD5) / Approved for entry into archive by Verônica Esteves (vevenesteves@gmail.com) on 2017-09-28T19:34:10Z (GMT) No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertação Flávio Gasperini.pdf: 2318649 bytes, checksum: af9486980e507779dbd5975709e84b4d (MD5) / Made available in DSpace on 2017-09-28T19:34:10Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertação Flávio Gasperini.pdf: 2318649 bytes, checksum: af9486980e507779dbd5975709e84b4d (MD5)
Previous issue date: 2010 / Consultório / Os defeitos críticos ósseos oriundos de trauma, tumores ou doenças degenerativas determinam um desafio no campo da Ortopedia, visto que a reconstrução cirúrgica se faz necessária através de enxertos ósseos. Apesar de os enxertos autógenos serem considerados um “padrão ouro”, as cerâmicas sintéticas a base de Hidroxiapatita (HA) são materiais muito promissores, devido às suas inerentes características biocompatíveis. A possibilidade de diminuição do tamanho das partículas em escala nanométrica e o advento da hidroxiapatita nanoestruturada podem melhorar a remodelação óssea. O objetivo deste estudo foi avaliar a resposta tecidual e a biocompatibilidade de esferas de HA produzidas a partir de partículas nanométricas em comparação às esferas de HA produzidas a partir de partículas micrométricas, ambas no estado sinterizado e não-sinterizado (Sem tratamento térmico), bem como seu potencial de degradação e osteogênese, em relação ao grupo controle (coágulo). Os biomateriais foram implantados em defeitos ósseos nas tíbias de 12 coelhos da raça Nova Zelândia (Oryctolagus cuniculus), pesando entre 2000g e 3500g. As esferas (425-600 μm) tiveram as propriedades físicas e químicas caracterizadas por DRX, FT-IR, MEV e foram também submetidas ao teste de dissolução. Os animais foram divididos randomicamente em cinco grupos: Grupo 1 (Controle) – coágulo sanguíneo; Grupo 2 – HA Sinterizada; Grupo 3 – HA Sem tratamento térmico; Grupo 4 – NanoHA Sinterizada; e Grupo 5 – Sem tratamento térmico. Os animais foram mortos 7 e 28 dias após a cirurgia e as amostras submetidas ao processamento histológico. As esferas não-tratadas eram menos cristalinas que as sinterizadas (DRX e FT-IR), sendo mais solúveis in vitro (teste de dissolução). In vivo, a nanoHA e a HA, ambas sem tratamento térmico, dissolveram e promoveram maior formação de tecido ósseo em relação às esferas sinterizadas. Concluiu-se que os materiais se mostraram biocompatíveis e osteocondutores, porém a neoformação óssea foi mais acentuada nos grupos da HA e nanoHA não-tratadas termicamente. / Bone critical defects from trauma, tumors or degenerative diseases prescribe a challenge in orthopedics, since surgical reconstruction is required by bone grafts. Although autografts are considered a gold standard, the synthetic ceramics based on hydroxyapatite (HA) are promising materials due to their inherent characteristics biocompatible. The possibility of decreasing the size of the particles at the nanometer scale and the advent of nanostructured hydroxyapatite may improve bone remodeling. The aim of this study was to evaluate the tissue response and biocompatibility of HA spheres shape made from nano-sized particles compared to the HA spheres made from micro-sized particles, both in sintered and non-heat treated as well as its potential for degradation and osteogenesis compared to control group (clot). The spheres (425-600 μm) had the physical and chemical properties characterized by XRD, FT-IR, SEM and were also subjected to dissolution test and the biomaterials were implanted in bone defects on 12 New Zealand rabbit’s tibiae (Oryctolagus cuniculus), weighing between 2000g and 3500g. The animals were randomly divided into five groups: Group 1 (Control) - blood clot, Group 2 - sintered HA, Group 3 - non-heat treated HA, Group 4 - sintered NanoHA and Group 5 - non-heat treated NanoHA. Animals were euthanized at 7 and 28 days after surgery and samples submitted to histological procedings. The non-heat treated had a lower cristallinity that the sintered materials (XRD and FT-IR), being more soluble in vitro (dissolution tests). In vivo, NanoHA and HA, both non-treated, degraded and promoted greater bone formation in relation to the sintered spheres. In conclusion, materials showed biocompatibility and osteoconduction, but the bone formation was more accentuated in the non-heat treated groups.
|
127 |
ENHANCED SURFACE INTEGRITY WITH THERMALLY STABLE RESIDUAL STRESS FIELDS AND NANOSTRUCTURES IN CRYOGENIC PROCESSING OF TITANIUM ALLOY TI-6AL-4VCaudill, James R. 01 January 2019 (has links)
Burnishing is a chipless finishing process used to improve surface integrity by severe plastic deformation (SPD) of surface asperities. As surface integrity in large measure defines the functional performance and fatigue life of aerospace alloys, burnishing is thus a means of increasing the fatigue life of critical components, such as turbine and compressor blades in gas turbine engines. Therefore, the primary objective of this dissertation is to characterize the burnishing-induced surface integrity of Ti-6Al-4V alloy in terms of the implemented processing parameters. As the impact of cooling mechanisms on surface integrity from SPD processing is largely unexplored, a particular emphasis was placed upon evaluating the influence of cryogenic cooling with liquid nitrogen in comparison to more conventional methodologies.
Analysis of numerical and experimental results reveals that burnishing facilitates grain refinement via continuous dynamic recrystallization. Application of LN2 during SPD processing of Ti-6Al-4V alloy suppresses the growth of new grains, leading to the formation of near-surface nanostructures which exhibit increased microhardness and compressive residual stress fields. This is particularly true in cryogenic multipass burnishing, where successive tool passes utilizing lower working pressures generate thermally stable work hardened surface layers, uniform nano-level surface finishes, and significantly deeper layers of compressive residual stresses.
|
128 |
Fabrication and characterization of a solar cell using an aluminium p-doped layer in the hot-wire chemical vapour deposition processKotsedi, Lebogang January 2010 (has links)
<p>When the amorphous silicon (a-Si) dangling bonds are bonded to hydrogen the concentration of the dangling bond is decreased. The resulting film is called hydrogenated amorphous silicon (a-Si:H). The reduction in the dangling bonds concentration improves the optoelectrical properties of the film. The improved properties of a-Si:H makes it possible to manufacture electronic devices including a solar cell. A solar cell device based on the hydrogenated amorphous silicon (a-Si:H) was fabricated using the Hot-Wire Chemical Vapour Deposition (HWCVD). When an n-i-p solar cell configuration is grown, the norm is that the p-doped layer is deposited from a mixture of silane (SiH4) gas with diborane (B2H6). The boron atoms from diborane bonds to the silicon atoms and because of the number of the valance electrons, the grown film becomes a p-type film. Aluminium is a group 3B element and has the same valence electrons as boron, hence it will also produce a p-type film when it bonds with silicon. In this study the p-doped layer is grown from the co-deposition of a-Si:H from SiH4 with aluminium evaporation resulting in a crystallized, p-doped thin film. When this thin film is used in the n-i-p cell configuration, the device shows photo-voltaic activity. The intrinsic layer and the n-type layers for the solar cell were grown from SiH4 gas and Phosphine (PH3) gas diluted in SiH4 respectively. The individual layers of the solar cell device were characterized for both their optical and electrical properties. This was done using a variety of experimental techniques. The analyzed results from the characterization techniques showed the films to be of device quality standard. The analysed results of the ptype layer grown from aluminium showed the film to be successfully crystallized and doped. A fully functional solar cell was fabricated from these layers and the cell showed photovoltaic activity.<br />
  / </p>
|
129 |
Production Of Hydrogenated Nanocrystalline Silicon Based Thinfilm TransistorAliyeva, Tamila 01 July 2010 (has links) (PDF)
The instability under bias voltage stress and low mobility of hydrogenated amorphous
silicon (a-Si:H) thin film transistor (TFT), produced by plasma enhanced chemical vapor deposition
(PECVD) technique, are the main problems impeding the implementation of active
matrix arrays for light emitting diode display panels and their peripheral circuitry. Replacing
a-Si:H by hydrogenated nanocrystalline silicon film (nc-Si:H) seems a solution due to its
higher mobility and better stability. Therefore nc-Si:H TFT was produced and investigated in
this thesis.
All TFT layers (doped nc-Si:H, intrinsic nc-Si:H and insulator films) were produced separately,
characterized by optical (UV-visible and FTIR spectroscopies, XRD) and electrical
(current-voltage, I-V) methods, and optimized for TFT application. Afterwards the non
self-aligned bottom-gate TFT structure was fabricated by the photolithographic method using
2-mask set.
The n+ nc-Si:H films, used for TFT drain/source ohmic contacts, were produced at high
H2 dilution and at several RF power densities (PRF). The change of their lateral resistivity
(rho) was measured by reducing the film thickness via reactive ion etching. The rho values rise
below a critical film thickness, indicating the presence of the disordered and less conductive
incubation layer. The optimum PRF for the lowest incubation layer was determined.
Among the deposition parameters only increased NH3/SiH4 flow rate ratio improved the
insulating properties of the amorphous silicon nitride (a-SiNx:H) films, chosen as the TFT
gate dielectric. The electrical characteristics of two TFTs with a-SiNx:H having low leakage
current, fabricated at different NH3/SiH4 ratios (~19 and ~28) were compared and discussed.
The properties (such as crystallinity, large area uniformity, etc.) of the nc-Si:H film as
TFT channel layer, were found to depend on PRF. For the films deposited at the center of
the PECVD electrode the change from an amorphous dominant structure to a nanocrystalline
phase took place with increasing PRF, whereas those at the edge had always nanocrystalline
nature, independent of PRF. The two different TFTs produced at the center of the electrode
with a-Si:H and nc-Si:H grown at low and high PRF, respectively, were compared through
their I-V characteristics and electrical stability under the gate bias voltage stress.
Finally, nc-Si:H TFT structure, produced and optimized in this work, was analyzed through
gate-insulator-drain/source capacitor by capacitance-voltage (C-V) measurements within
106-10-2 Hz frequency (F) range. The inversion regime was detected at low F without any
external charge injection. Besides, ac hopping conductivity in the nc-Si:H bulk was extracted
from the fitting results of the C-F curves.
|
130 |
Optimizing Transmission Kikuchi Diffraction for Analysing Grain Size and Orientation of Nanocrystalline CoatingsTryblom, Axel January 2015 (has links)
In order to increase efficiency and lifetime of cutting tools it is typical to apply thin coatings by physical or chemical vapour deposition. Applying coatings on cutting tools has shown an increase in both efficiency and lifetime and are of large interest in further development. The study of coatings and their mechanical properties is a very active research area and produces tools extensively used in the industry. The behaviour of materials on a macroscopic scale can typically be related to microscopic properties. Some coatings produced by Chemical Vapour Deposition (CVD) but especially Physical Vapour deposition (PVD) have crystal structures which are difficult to analyse by conventional methods due to crystal sizes in the nanometre scale. For nanocrystalline materials standard methods fall short due to a limited resolution of the methods. Recently a method for electron diffraction of crystalline samples was suggested to be used differently in order to achieve a higher resolution. Unlike earlier when electrons were reflected from the sample, using Electron Backscattering Diffraction (EBSD), the electrons were transmitted through thin samples with thicknesses in the magnitude of 100 nm, which enabled the crystal structure to be determined. The new method is typically referred to as either Transmission Kikuchi Diffraction (TKD) or transmission EBSD (t-EBSD) with a resolution down to approximately 10 nm. The goal with this master thesis has been to evaluate sample preparation methods and TKD studies on PVD samples. Each step has been divided into parameters which govern the sample preparation and analysis and optimized accordingly in order to achieve best possible results of the crystal structure of PVD coatings. From this it has been possible to show how TKD is optimally performed and which difficulties and limitations that are present. In this thesis two coatings, TiN and (Ti,Al)N, have been studied with TKD and two different preparation methods have been attempted. These were precision mechanical polishing and in-situ lift out with a Dual Beam System. Mechanical polishing did not succeed in producing samples for TKD but was not ruled out as a possibility while the in-situ lift out method could both produce samples and achieve a crystallographic indexing around 80 %. The only areas which were difficult to index were crystal boundaries and crystal clusters where individual crystals were in the range of <30 nm. In these areas overlapping Kikuchi patterns were observed due to the resolution limit of TKD.
|
Page generated in 0.0934 seconds