• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating the effect of oxide texture on the corrosion performance of zirconium alloys

Garner, Alistair John January 2015 (has links)
This work was performed as part of the MUZIC-2 (Mechanical Understanding of Zirconium Corrosion) collaboration, established with the goal of understanding the mechanism of hydrogen pickup in zirconium alloys. Hydrogen pickup is one of the least understood and most significant degradation mechanisms affecting zirconium alloys in nuclear reactors. These alloys are used as cladding and structural materials in the reactor core, mainly due to their low thermal neutron absorption cross section and excellent corrosion resistance. This project aims to investigate the effect of oxide texture (i.e. the degree of preferred orientation) on the corrosion performance of zirconium alloys. The texture of the oxide is expected to affect the microstructural development of the oxide, the grain boundary distribution and the stress state. It is therefore considered to be one of the most important factors in determining how the corrosion process occurs, and why different alloys exhibit significantly different corrosion performance. It is hoped that this project will add to the current knowledge of the corrosion process, and in particular hydrogen pickup, so that the route of hydrogen through the protective oxide can be identified. This will lead to the development of a new generation of alloys that provide improved oxidation and hydrogen pickup performance, whilst maintaining the required mechanical properties. This work focuses on four zirconium alloys; Zircaloy-4, ZIRLO™, low-Sn ZIRLO™ and Zr-1.0Nb-0.1Fe. The alloys all have different chemical compositions and therefore exhibit different corrosion performance. The macrotexture of the oxide formed on different alloys was measured by glancing angle X-ray diffraction (XRD) and Electron Backscatter Diffraction (EBSD). A fibre texture was formed in all cases, with the (10-3) to (10-5) planes oriented parallel to the metal-oxide interface for the monoclinic phase. The major orientation was found to be independent of alloy chemistry, substrate orientation and oxidation conditions. The monoclinic texture strength was found to be weakened with increasing oxidation temperature, The major orientation of the tetragonal phase was also found to be a fibre texture, with the (001) planes oriented approximately parallel with the interface. Although significant variation from this texture component was observed. It is suggested that the main driving force for oxide texture development is the transformation stress induced by the Zr-ZrO2 transformation. The microtexture of the oxides was measured using two novel techniques, Transmission Kikuchi Diffraction (TKD) and automated crystal orientation mapping with transmission electron microscopy (TEM). The techniques revealed an oxide microstructure consisting of an outer layer of equiaxed grains with a large range of orientations and an inner layer consisting of well-aligned columnar monoclinic grains. This layer of equiaxed grains was observed to form again after the transition in corrosion kinetics. A large fraction of transformation twin boundaries were observed throughout the oxides. Some of these boundaries were observed to surround large monoclinic grains, providing evidence that the tetragonal grains from which they transformed had grown considerably larger than the critical grain size for stabilisation. Without the presence of Sn, larger monoclinic grains were observed to form with a greater degree of preferred orientation, and with a lower fraction of transformation twin boundaries than Sn-containing alloys. In addition, an increased number of well-oriented tetragonal grains was correlated with the presence of Sn. It is therefore concluded that a reduction in Sn will lead to the formation of an oxide microstructure that is more resistant to both oxidation and hydrogen pickup. An analysis of the crystallography and morphology of a ZrO phase present at the metal-oxide interface was also performed. Finally, the observations have been used to construct a model of the corrosion process.
2

Optimizing Transmission Kikuchi Diffraction for Analysing Grain Size and Orientation of Nanocrystalline Coatings

Tryblom, Axel January 2015 (has links)
In order to increase efficiency and lifetime of cutting tools it is typical to apply thin coatings by physical or chemical vapour deposition. Applying coatings on cutting tools has shown an increase in both efficiency and lifetime and are of large interest in further development. The study of coatings and their mechanical properties is a very active research area and produces tools extensively used in the industry.  The behaviour of materials on a macroscopic scale can typically be related to microscopic properties. Some coatings produced by Chemical Vapour Deposition (CVD) but especially Physical Vapour deposition (PVD) have crystal structures which are difficult to analyse by conventional methods due to crystal sizes in the nanometre scale. For nanocrystalline materials standard methods fall short due to a limited resolution of the methods.  Recently a method for electron diffraction of crystalline samples was suggested to be used differently in order to achieve a higher resolution. Unlike earlier when electrons were reflected from the sample, using Electron Backscattering Diffraction (EBSD), the electrons were transmitted through thin samples with thicknesses in the magnitude of 100 nm, which enabled the crystal structure to be determined. The new method is typically referred to as either Transmission Kikuchi Diffraction (TKD) or transmission EBSD (t-EBSD) with a resolution down to approximately 10 nm.  The goal with this master thesis has been to evaluate sample preparation methods and TKD studies on PVD samples. Each step has been divided into parameters which govern the sample preparation and analysis and optimized accordingly in order to achieve best possible results of the crystal structure of PVD coatings. From this it has been possible to show how TKD is optimally performed and which difficulties and limitations that are present.  In this thesis two coatings, TiN and (Ti,Al)N, have been studied with TKD and two different preparation methods have been attempted. These were precision mechanical polishing and in-situ lift out with a Dual Beam System. Mechanical polishing did not succeed in producing samples for TKD but was not ruled out as a possibility while the in-situ lift out method could both produce samples and achieve a crystallographic indexing around 80 %. The only areas which were difficult to index were crystal boundaries and crystal clusters where individual crystals were in the range of <30 nm. In these areas overlapping Kikuchi patterns were observed due to the resolution limit of TKD.
3

The role of twinning in the plastic deformation of alpha phase titanium

Lainé, Steven John January 2017 (has links)
The optimisation of compressor stage aerofoil and fan blade design remains an important area of titanium alloy research and development for aerospace gas turbines. Such research has important implications for critical and sensitive component integrity and efficiency. In particular, a better understanding of how deformation twinning interacts with microstructural features in titanium alloys is required, because such twinning facilitates plastic deformation at a higher strain rate than dislocations. To investigate this behaviour, commercial purity titanium and the titanium alloy Ti–6Al–4V were subjected to ballistic impact testing at room temperature with a high strain rate of 10³s⁻¹. In addition, a detailed analysis was conducted of three manufacturing processes of Ti–6Al–4V (wt. %) that are likely to cause deformation twinning: metallic shot peening, laser shock peening and deep cold rolling. The results presented in this thesis have furthered the understanding of the role of deformation twinning in the plastic deformation of α-phase titanium. Key findings of the research include the characterisation of deformation twinning types and the conditions that favour certain deformation twinning types. From the analysis of the ballistic testing of commercial purity titanium, the first definitive evidence for the existence of {112‾4} twinning as a rare deformation twinning mode at room temperature in coarse-grained commercial purity titanium is presented. In addition, the ballistic testing results of the Ti–6Al–4V alloy highlighted very different deformation twinning characteristics. Commercial purity titanium deformed plastically by a combination of {101‾2} and {112‾1} tensilve twinning and {112‾4} and {112‾2} compression twinning modes. By contrast, the deformation twinning of Ti–6Al–4V was limited to only the {101‾2} and {112‾1} tensile twinning modes. The two tensile deformation twinning types have very different morphologies in equiaxed fine grained Ti–6Al–4V. {112‾1} deformation twins span multiple grain boundaries and {101‾2} deformation twins reorient entire grains to a twinned orientation. This observation provides evidence for whole grain twinning of equiaxed fine grained Ti–6Al–4V by {101‾2} twinning. Grain boundary interactions between various deformation twinning types and alpha phase grain boundaries in commercial purity titanium and Ti–6Al–4V are reported and analysed. In commercial purity titanium {101‾2} as well as other deformation twinning types were observed interacting across alpha phase boundaries and higher angle alpha phase grain boundaries. The analyses of the manufacturing processes of Ti–6Al–4V highlight the very different dislocation and deformation twinning structures in surfaces processed by these techniques. A notable feature of material processed by laser shock peening is the almost complete absence of deformation twinning, contrasting with the frequent observation of extensive deformation twinning observed in the material processed by metallic shot peening and deep cold rolling. Therefore, the findings suggest that there is a strain rate limit above which deformation twinning is suppressed. The implications of this research are that a better understanding of the conditions that that favour certain deformation twinning types or propagation behaviours will enable more accurate plasticity modelling and better alloy design. This is important for the design and the manufacturing of titanium components and the high strain rate deformation to which titanium components in aerospace gas turbines can be subjected because of bird strike, foreign object debris ingestion or fan blade failures.
4

Multimodal Nanoscale Characterization of Transformation and Deformation Mechanisms in Several Nickel Titanium Based Shape Memory Alloys

Casalena, Lee 27 October 2017 (has links)
No description available.
5

Konzeption und Implementierung eines Informationssystems zur Effizienzsteigerung des Technischen Kundendienstes

Schlicker, Michael 30 January 2019 (has links)
Die Dissertation hat zum Ziel, zum einen Beitrag zur wissenschaftlichen Diskussion in der Wirtschaftsinformatik hinsichtlich der Gestaltung von Informationssystemen zur Unterstützung des Technischen Kundendienstes (TKD) zu leisten. Zum anderen sollen die Ergebnisse bei Herstellern und Serviceorganisationen des Maschinen- und Anlagenbaus, der Fertigungsindustrie sowie bei Softwareherstellern als Grundlage zur Konzeption und Implementierung derartiger Informationssysteme dienen. Die vorliegende Arbeit untersucht im Dachbeitrag (Teil A) zunächst komplementäre Lösungsansätze bzw. -zusammenhänge relevanter Wissenschaftsdisziplinen wie der Wirtschaftsinformatik, der Ingenieurwissenschaft, der Dienstleistungs- und Product-Service-Systems-Forschung sowie der Arbeitswissenschaft. Unter Berücksichtigung aktueller methodischer Diskussionen der Wirtschaftsinformatik wird die Arbeit in das gestaltungsorientierte Paradigma eingeordnet, ergänzt um Elemente einer erklärungsorientierten Perspektive. Das Untersuchungsdesign orientiert sich an dem Ordnungsrahmen von Gregor und Jones. Allerdings wird im Unterschied zu Gregor und Jones der prototypischen Instanziierung ausgewählter Artefakte inklusive Evaluation eine hohe Bedeutung zugemessen und diese entsprechend in der Arbeit dargestellt. So entstehen unter Anwendung ausgewählter Methoden der Wirtschaftsinformatik praxisnahe Artefakte, welche die in der Arbeit adressierte Problemstellungen und Forschungsfragen adäquat diskutieren. Im Ergebnisteil werden „Allgemeine Ergebnisse“ und „Spezifische Publikationsergebnisse“ differenziert. In den allgemeinen Ergebnissen erörtert die Arbeit zum einen die entstandenen Artefakte, zum anderen wird die wirtschaftliche Verwertung der Forschungsergebnisse skizziert. Diese Darstellung erfolgt anhand einer Unternehmensgründung, die im Anschluss an die Forschungsprojektphase vom Verfasser realisiert wurde. Die im Forschungszeitraum erarbeiteten und veröffentlichten Teilergebnisse aus dem Untersuchungskontext werden in den spezifischen Publikationsergebnissen zusammengefasst.

Page generated in 0.0128 seconds