• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • 1
  • Tagged with
  • 10
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nanocrystallization and Amorphization of Zr Base Alloys during Accumulative Roll Bondin

Hsieh, Pei-Ju 12 July 2004 (has links)
The amorphous alloys have attracted great attention due to their characteristics and future potential. This research is intended to synthesis new amorphous alloy with high glass forming ability as well as low density. The addition of lighter-weight elements such as Al, Ti, Zr, Ni and Cu are tried. The selected vitrification methods in this study are solid-state accumulated roll bonding (ARB) and arc-melting of multi-element alloys. Although the procedures of solid-state reaction are more complicated than that of casting, the influence of cooling rate on amorphization process is not important. Various Zr based binary, ternary, and pentanary alloys are synthesized by the ARB method. Besides, two pentanary alloys are also developed by arc melting method for the properties comparison with those made by ARB. The evolutions of hardness, strain accumulation, the enhanced diffusion, nanocrystalline phase size, amorphous volume fraction, elastic modulus, and relative energy states in various Zr based alloy systems during ARB are characterized and analyzed by transmission electron microscopy (TEM), in correlation with X-ray diffraction results. It appears that compatible initial foil hardness would be most beneficial to the nanocrystallization and amorphization processes during the room temperature ARB; the influence would overwhelm the atomic size effect (i.e., the anti-Hume-Rothery rule) applicable for solidification processing such as drop casting or melt spinning. Meanwhile, the estimated diffusion rates during ARB are higher by several orders of magnitude than the lattice diffusion in bulk materials and the hardness is seen to increase with increasing ARB cycles. The last stage for the nanocrystalline phase to suddenly transform into the amorphous state is examined, coupled with thermodynamic analysis. From the experimental observations and interfacial energy calculations for multilayered films, it is demonstrated that the rapid increase of interfacial free energy of the nanocrystalline phases with increasing ARB cycles appears to be a determining role in enhancing amorphization process. The local spatial distributions of the nanocrystalline and amorphous phases are seen under TEM to be non-uniform, varying significantly in size and quantity in different regions. The diffraction spots and rings in the TEM diffraction patterns are still originated from the pure elements, meaning that the nanocrystalline phases are those unmixed hard particles left from the previous severe deformation and diffusion processes. A critical size of the nanocrystalline phases around 3 nm is consistently observed in all binary, ternary, and pentanary Zr-X based alloys, below the critical size a sudden transformation from the nanocrystalline to amorphous state would occur. Finally, the hardness and Young¡¦s modulus of the nanocrystalline and amorphous materials are estimated based on the microhardness results. On the other hand, a pentanary alloy (according to the composition of the synthesized ARB specimens) is also made by the arc melting method for comparison. The sharp peaks are still observed in XRD pattern of the as-melted alloys. Hence, the melt spinning method is followed. A nearly completely amorphous state is obtained in the melt spun alloy. The hardness readings of the prepared alloys are all significantly higher than those typically for metallic alloys. Moreover, the resulting Zr based amorphous alloys made by ARB possess glass transition and crystallization temperatures similar to those processed by melt spinning or drop casting.
2

Influences of grain boundaries and surface nanocrystallization of stainless Steel on Pseudomonas Aeruginosa Biofilm’s Adherence

Yu, Bin Unknown Date
No description available.
3

Influences of grain boundaries and surface nanocrystallization of stainless Steel on Pseudomonas Aeruginosa Biofilms Adherence

Yu, Bin 06 1900 (has links)
A common complication associated with medical implants is the infectious bio-film, which can cause chronic infection that is difficult to control. Grain boundaries (GBs) in materials of medical implants are often preferential locations for bacteria to congregate, which could be attributed to higher affinity of grain boundaries for bacterial bio-films. In this study, the molecular interaction of the Pseudomonas aeruginosa receptor binding domain, a self-folding domain of 17 amino acid residues derived for the PilA structural protein, which can represents properties of Pseudomonas aerginosa biofilm, with microcrystalline stainless steel surfaces was examined with atomic force microscopy (AFM) both at grain boundaries and within grains. Adherence of Pseudomonas aeruginosa biofilm to nanocrystallized stainless steel surface was also determined using AFM. Results indicate that adherence of biofilm adherence at grain boundaries of microcrystalline surface is 2-fold higher than that of inside grains. Nanocrytalline surface is more resistant to biofilm than the microcrystalline one due to the formation of a strong oxidation film after annealing and thermal oxidation process. Surface nanocrystallization for enhanced corrosion resistance of Ag-incorporated 304 stainless steel surface was also studied. It is demontstrated that nanocrystallization of the antibacterial agent-incorporated stainless steel surface also provides an effective approach to control the corrosion problem resulting from the typical galvanic effect of multiphase alloys.
4

Nanocrystallization In Marginal Glass Forming Alloys

Demirtas, Tuba 01 February 2013 (has links) (PDF)
The marginal glass-forming alloys have attracted much attention due to unique products of devitrification with a very high number density of nuclei up to 10^23 m^-3. Among these alloy systems, utmost interest is given to Al-RE and Al-TM-RE alloys with excellent lightweight mechanical (fracture strength close to 1 GPa) and chemical properties attributed to the presence of an extremely high density of nanocrystals embedded in an amorphous matrix. Classical nucleation theory fails in explaining this abnormal nucleation behavior, several other mechanisms have been proposed / however, there is still no agreement on the exact nucleation mechanism. Al-Tb system was investigated in liquid and solid amorphous states with a collective study of ab-initio MD and RMC simulations and state of art X-rays and e-beam techniques. Regions of pure Al clusters in the solid and liquid states were detected with the sizes extending up to 1-2 nm length. Al clusters interconnecting regions lead to formation of RE rich MRO structure which gave rise to the pre-peak in S(Q)-Q data in liquid and solid states. Specimens having MRO were crystallized within a controlled atmosphere and temperature and investigated using a combined study of TEM, HRTEM, SEM, XRD and DSC. HRTEM investigations and JMA results indicated different mechanism of nucleation. Therefore the kinetics of highly populated nuclei formation was found too complicated to be explained by well-known JMA approach. Mechanical tests were applied to determine the effects of morphology and populations of nanocrystals embedded in amorphous matrix. The tensile tests and the subsequent fracture surface analysis indicated brittle type of failure and the formation of shear bands, respectively. Relatively high hardness and tensile strength were detected by nanocrystallization.
5

Continuous crystallization of ultra-fine energetic particles by the Flash-Evaporation Process / Cristallisation continue des particules énergétiques ultra-fines par Évaporation-Flash

Risse, Benedikt 04 October 2012 (has links)
Sous l'effet d'une forte impulsion mécanique, d'une chaleur très forte ou d'une décharge électrostatique, un explosif comme le TNT ou le RDX peut accidentellement être initié. L'énergie apportée à l'explosif est convertie en chaleur, appelée point-chaud, dans des endroits spécifiques, contenant des impuretés, bulles de gaz, pores ouverts ou autres hétérogénéités. La taille d'un point-chaud de quelques micromètres peut être déjà suffisante pour initier une déflagration ou même une détonation. En réduisant la taille des particules de l'explosif, la formation des points-chauds est empêchée conduisant à un matériau moins sensible. Au sein de ce travail, un procédé continu est développé, fondé sur le principe de la cristallisation-flash, et permettant la préparation de particules énergétiques submicroniques en quantité de plusieurs grammes. Le procédé repose sur une opération de séchage par atomisation, au cours de laquelle une solution surchauffée est atomisée d'une manière continue. Afin de diminuer la taille moyenne des particules et d'obtenir une distribution de taille des particules très étroite, une étude paramétrique est réalisée. Au moyen de la cristallisation-flash, la préparation de composites énergétiques de haute qualité en grandes quantités est un succès. La qualité et quantité de ce composite énergétique sont uniques. Grâce au potentiel de ce procédé, la cristallisation-flash peut permettre la préparation de nombreuses substances et compositions énergétiques ou inertes / High explosives, such as TNT or RDX, may be accidentally initiated under the influence of a strong mechanical impulse, great heat or an electrostatic discharge. Smallest impurities, open pores, entrapped gases or other inhomogeneities within the explosive matrix may convert the delivered energy into heat, causing the formation of a so called hot-spot. A hot-spot size of a few micrometers can already be sufficient to initiate a deflagration or even a detonation of the explosive. By decreasing the particle size of the explosive, the formation of hot-spots is inhibited, resulting in a less sensitive material. In this work, a continuous operating flash-crystallization process was developed, being able to produce energetic submicron particles in a multigram scale. The process bases on a spray drying process where superheated solutions are continuously atomized. A parametric study was performed on this process in order to decrease the particle size and obtaining a narrower particle size distribution. By means of this flash-crystallization process, highly homogeneous energetic composites were prepared in a large scale. The quality and amount of the energetic composite are unique. The versatility of the flash-crystallization process allows the preparation of a large number of energetic and inert substances and compositions
6

Nano-scale Phase Separation And Glass Forming Ability Of Iron-boron Based Metallic Glasses

Aykol, Muratahan 01 September 2008 (has links) (PDF)
This study is pertinent to setting a connection between glass forming ability (GFA) and topology of Fe-B based metallic glasses by combining intimate investigations on spatial atomic arrangements conducted via solid computer simulations with experimentations on high GFA bulk metallic glasses. In order to construct a theoretical framework, the nano-scale phase separation encountered in metallic glasses is investigated for amorphous Fe80B20 and Fe83B17 alloys via Monte Carlo equilibration and reverse Monte Carlo simulation. The phenomenon is identified regarding three topological aspects: 1) Pure Fe-clusters as large as ~0.9 nm and Fe-contours with ~0.72 nm thickness, 2) Fe-rich highly deformed body centered cubic regions, 3) B-centered prismatic units with polytetrahedral order forming distinct regions of high and low coordinations are found. All topological aspects are compiled into a new model called Two-Dimensional Projection Model for predicting contributions to short and medium range order (MRO) and corresponding spacing relations. The outcome geometrically involves proportions approximating golden ratio. After successfully producing soft magnetic Fe-Co-Nb-B-Si based bulk metallic glass and bulk nanocrystalline alloys with a totally conventional route, influences of alloying elements on structural units and crystallization modes are identified by the developed model and radial distributions. While Co atoms substitute for Fe atoms, Nb and Si atoms deform trigonal prismatic units to provide local compactions at the outset of MRO. Cu atoms alter the type of MRO which resembles crystalline counterparts and accompanying nanocrystals that precipitate. The GFA can be described by a new parameter quantifying the MRO compaction, cited as &amp / #934 / .
7

Nanocrystal Silicon Based Visible Light Emitting Pin Diodes

Anutgan, Mustafa 01 December 2010 (has links) (PDF)
The production of low cost, large area display systems requires a light emitting material compatible with the standard silicon (Si) based complementary metal oxide semiconductor (CMOS) technology. The crystalline bulk Si is an indirect band semiconductor with very poor optical properties. On the other hand, hydrogenated amorphous Si (a-Si:H) based wide gap alloys exhibit strong visible photoluminescence (PL) at room temperature, owing to the release of the momentum conservation law. Still, the electroluminescence (EL) intensity from the diodes based on these alloys is weak due to the limitation of the current transport by the localized states. In the frame of this work, first, the luminescent properties of amorphous silicon nitride (a-SiNx:H) thin films grown in a plasma enhanced chemical vapor deposition (PECVD) system were analyzed with respect to the nitrogen content. Then, the doping effciency of p- and n-type hydrogenated nanocrystalline Si (nc-Si:H) films was optimized via adjusting the deposition conditions. Next, the junction quality of these doped layers was checked and further improved in a homojunction pin diode. Heterojunction pin light emitting diodes (LEDs) were fabricated with a-SiNx:H as the luminescent active layer. The EL effciency of the fresh diodes was very low, as expected. As a solution, the diodes were electro-formed under high electric field leading to nanocrystallization accompanied by a strong visible light emission from the whole diode area. The current-voltage (I-V) and EL properties of these transformed diodes were investigated in detail.
8

Ingénierie moléculaire de nouveaux émetteurs à l'état solide et élaboration de nanoparticules coeur-coquilles pour l'imagerie médicale / Molecular engineering of new organic fluorophores and encapsulation in a sol-gel shell for medical imaging

Eucat, Gwenaelle 26 November 2014 (has links)
Une ingénierie moléculaire a été menée. On a ainsi obtenu des fluorophores émettant, à l'état solide, dans le rouge et le proche infrarouge avec des rendements quantiques performants. Nous nous sommes particulièrement intéressés à des petites molécules de type push-pull, facile à synthétiser, permettant ainsi d'obtenir un grand nombre de molécules indispensable pour cette ingénierie moléculaire. Il a notamment été constaté que certaines règles établies en solution sont également valables à l'état solide. Ensuite, les chromophores répondant au cahier des charges fixé par la méthode de séchage par spray ont été sélectionnés et encapsulés, d'une part, en couche mince sol-gel afin d'observer leur comportement en milieu confinée. D'autre part, pour ceux ayant un bon comportement en matrice sol-gel (contrôlé par spectroscopie de fluorescence à un photon), ils ont été insérés dans une coquille du même type. Les conditions d'élaboration pour chaque chromophore ont été optimisées en se basant, essentiellement, sur la technique de microscopie électronique à balayage. Nous avons, en particulier, pu démontrer que l'étape d'encapsulation en couche mince sol-gel, était une très bonne technique, rapide et facile à mettre en œuvre, pour s'assurer que les composés ne souffraient ni de polymorphisme ni de protonation dans une matrice sol-gel avant la synthèse de nanoparticules cœur-coquille. Enfin, une étape de fonctionnalisation et d'ajout d'agent de ciblage permettra d'effectuer des premiers tests in vivo des nanoparticules comme agents imageant. / A molecular engineering was led. We obtained fluorophores emitting, in the solid state, in the red and the near infrared with efficient quantum yields. We were particularly interested in small push-pull molecules, easy to synthesize, to obtain a large number of molecules essential for this molecular engineering. Especially, it was noticed that certain rules established in solution are also valid in the solid state. Then, chromophores which correspond to the specifications fixed by the spray drying method was selected and encapsulated, on one hand, in a sol-gel thin-layer to observe their behavior in an environment confined. On the other hand, for those having a good behavior in the sol-gel matrix (controlled by one photon fluorescence spectroscopy), they were confined in a sol-gel shell of the same type. Elaboration's conditions for every compound were optimized, essentially, with the technique of scanning electron microscopy. We demonstrated that the encapsulation step in a sol-gel thin-layer was a very good technique, fast and easy to operate, to make sure that compounds had neither polymorphism nor protonation in a sol-gel matrix before the synthesis of the nanoparticles. Finally, a functionalization step and addition of new targeting functions will allow making first in vivo tests of nanoparticles as biological labels.
9

Параметры микроструктуры аморфных сплавов типа Finemet : магистерская диссертация / Parameters of microstructure amorphous alloys of Finemet type

Никульченков, Н. Н., Nikul’chenkov, N. N. January 2018 (has links)
В настоящей работе объектом исследования является магнитомягкий аморфный сплав системы Fe-Si-Nb-Cu-Mo-B из группы материалов Finemet. Образец выполнен в виде ленты толщиной 20…30 мкм методом быстрой закалки (спиннингованием). Для определения температурных интервалов фазовых и структурных превращений в исходно аморфном сплаве были использованы методы калориметрии, дилатометрии, терморентгеновского фазового анализа. При скоростях нагрева 0,3…0,5 o/сек установлен температурный диапазон существования данного сплава в нанокристаллическом состоянии. / The research object in that work is magnetically soft amorphous Fe-Si-Nb-Cu-Mo-B alloy. That and same alloy systems was named as Finemet material. The sample is an amorphous ribbon, which has thickness of 20…30 μm, it was producing by melt spinning method. The samples were studied using methods of calorimetry, dilatometry and non-ambient x-ray diffraction analysis. The alloy was heat treated. Data about thermal effects, changes in geometric dimensions, changes in the phase composition, and about critical points are obtained. Interval of nanocrystallic state existence for heating rate 0.3…0.5 o/sec was determined.
10

Investigations into the Structural and Physical Properties of Li2O-M2O-2B2O3 (M=Li, Na & K), BaO-TiO2-B2O3 and 2Bi2O3-B2O3 Glass Systems

Paramesh, Gadige January 2013 (has links) (PDF)
Borate glasses and glass-nano/microcrystal composite fabrication and investigations into their physical properties, have been interesting from their multifunctionalities view point. Certain borate structural units possess high hyperpolarizabilities and give rise to high nonlinear optical effects. High refractive index materials are important for photonic applications. Heavy metal oxide (Bi2O3) containing compounds have high refractive indices. Glasses embedded with wide band-gap semiconducting oxide crystals such as TiO2 received much attention due to their easy processing, stability and promising physical properties. Though TiO2 is used as nucleating agent to fabricate glass-ceramics of various phases, crystallization of TiO2 in glass matrices is difficult and the data are scarce in the literature. Therefore it was worth attempting to find glass compositions in which one can obtain TiO2 crystallization in large volume fractions. Towards this TiO2 crystallization was accomplished in BaO-TiO2-B2O3 glass matrix over wide composition ranges by tuning the concentration of BaO-TiO2 content in B2O3 network. The physical properties of these glasses of various compositions and glass-nanocrystal composites of TiO2 phase (anatase) were investigated. Interestingly BaO-TiO2-B2O3 glasses found to be hydrophobic in nature. The results obtained in the present research work are classified into five chapters apart from the Introduction, Materials and Methods chapters. Chapter 1 constitutes preface to oxide glasses, principles of glass formation and structural criteria followed by crystallization kinetics. In addition, principles of dielectric, optical and mechanical phenomena in glasses are discussed, since the present thesis focuses on the aforesaid physical properties. This chapter concludes with scope of the present thesis. Chapter 2 includes the detailed description concerning the fabrication techniques of materials under study and various characterization methods that have been employed at various stages of the present research work. The principles and experimental tools adopted for the structural and microstructural studies of materials were illustrated. Measurement techniques and experimental setup used to study physical parameters such as dielectric, optical, mechanical etc. were elaborated. Chapter 3 comprises structural, dielectric, electrical transport characteristics and optical studies of mixed alkali borate glasses in the 0.5Li2O-0.5M2O-2B2O3 (M=Li, Na and K) system. Transparent glasses in the Li2O-2B2O3 (LBO), 0.5Li2O-0.5Na2O-2B2O3 (LNBO) and 0.5Li2O-0.5K2O-2B2O3 (LKBO) were fabricated via the conventional melt quenching technique. Amorphous and glassy nature of the samples was confirmed via the X-ray powder diffraction and the differential scanning calorimetry, respectively. LKBO glass was found to have high thermal stability than that of LBO and LNBO. The frequency and temperature dependent characteristics of the dielectric relaxation and the electrical conductivity were investigated in the 100 Hz - 10 MHz frequency range. The relaxation and conductivity were rationalized using impedance and modulus formalism. Imaginary part of the electric modulus spectra was modelled using an approximate solution of Kohlrausch-Williams-Watts relation. The stretching exponent, β, was found to be temperature independent for LNBO glasses. Activation energies for conduction and relaxation process were calculated using the Arrhenius relation. The activation energy was found to be higher (1.25eV) for LKBO glasses than that of the other glass systems under study. This is attributed to the mixed cation effect. It has wide optical transmission window and optical band gap. Urbach energies were calculated for all these glasses. LBO, LNBO and LKBO glass compositions were found to crystallize in Li2B4O7, LiNaB4O7 and LiKB4O7 phases respectively upon heat treatment at appropriate temperatures. Transparent glass-micro crystal composites of LiKB4O7 were fabricated from LKBO glasses and found to be SHG active. BaO-TiO2-B2O3 Chapter 4 delineates the evolution of nanocrystalline TiO2 phase (Anatase) in BaO-TiO2-B2O3 (BTBO) glasses. Transparent colourless glasses in the ternary system were fabricated via conventional melt-quenching technique. The glasses with certain molar concentrations of BaO and TiO2 upon heat treatment at appropriate temperatures yielded nanocrystalline phase of TiO2 associated with the crystallite size in the 5-15 nm range. Nanocrystallized glasses exhibited high refractive index (no=2.15) at λ=543nm. These glasses were found to be hydrophobic in nature associated with the contact angle of 90o. These high index glass nanocrystal composites would be of potential interest for optical device applications. Crystallization kinetics of anatase phase in BTBO glasses were studied using non-isothermal Differential Scanning Calorimetry (DSC) at three different heating rates (10, 20 & 30 K/min). Scanning Electron Microscopy (SEM) carried out on heat treated (at 920 K) glasses confirmed bulk nucleation and three-dimensional growth. Johnson-Mehl-Avrami model could not be applied for this system suggesting considerable overlap of the nucleation and growth involving complex transformation process. However, modified Kissinger and Ozawa models were used to calculate the effective activation energy associated with anatase crystallization. The kinetic exponent n was found to be temperature dependent indicating the change in the crystallization mechanism. This is attributed to the high entropy fusion of anatase phase, fast crystallization rate and nano dimension of the anatase phase. Chapter 5 illustrates structural changes that occur in the x(BaO-TiO2)-B2O3 (x=0.25, 0.5, 0.75 &1 mol.) system on increasing the x apart from the details concerning some physical property correlations. Thermal stability and glass forming ability as determined by Differential Thermal Analysis (DTA) were found to increase with increasing BaO-TiO2 (BT) content. However, there was no noticeable change in the glass transition temperature (Tg). This was attributed to the active participation of TiO2 in the network formation especially at higher BT contents via the conversion of the TiO6 structural units into TiO4 units which increased the connectivity and resulted in an increase in crystallization temperature. Dielectric and optical properties at room temperature were studied for all the glasses under investigation. Interestingly, these glasses were found to be hydrophobic. The results obtained were correlated with different structural units present in the glass and their connectivity. These glasses exhibited low loss (tan δ≈0.002), frequency (10 kHz- 10 MHz) and temperature independent (or very weak temperature response) flat-dielectric response. Crossover temperature was encountered between flat response and Jonscher’s universal response. The cross-over temperature and cross-over energy barrier from flat dielectric response to Jonscher’s response was deduced for all the glasses in the present investigation. Electric modulus formalism was invoked to rationalize the relaxation phenomena. The observed dielectric response and conduction process in these glasses were attributed to the local vibration and switching of non-bridging oxygen ions in their potential cage and hopping over distributed energy barriers above the crossover temperature. Chapter 6 depicts the dielectric and mechanical properties of glasses embedded with TiO2 nanocrystals. BaO-TiO2-B2O3 glasses on subjecting to appropriate heat treatment temperature yielded TiO2 nano crystalline anatase phase. NMR studies carried out on the as-quenched glasses facilitated the estimation of fraction of tetrahedral and trigonal borate units. Poisson’s ratio and Young’s modulus were evaluated through theoretical expressions proposed by Makishima and Mackenzie. Nano-indentation and micro-indentation studies were carried out on the as-quenched glasses and glass-nanocrystal composites to examine mechanical characteristics. Estimated and indentation Young’s modulus of glasses were found to be in reasonable agreement. Hardness and Young’s modulus increased with increasing fraction of nano crystallites whereas fracture toughness was found to depend strongly on surface conditions. The results were corroborated by the structural units and particulates present in these glasses. Dielectric constant increased with increasing volume fraction of the nanocrystals which was rationalized via mixture rule. Chapter 7 describes the dielectric properties, electrical conduction and electric relaxation phenomena in 2Bi2O3-B2O3 (BBO) glasses followed by thier linear and nonlinear optical characteristics. Glasses in BBO system were obtained via melt-quenching technique. X-ray diffraction and differential scanning calorimetry were used to study the structural characteristics. Dielectric studies carried out on these glasses revealed near constant loss (NCL) response in the 1 kHz to 1 MHz frequency range at moderately high temperatures (300-450 K) accompanied by relatively low loss (tan δ=0.006, at 1 kHz & 300 K) and high dielectric constant (ε' =37, at 1 kHz & 300 K). The variation in AC conductivity with temperature at different frequencies showed a cross over from NCL response characterized by local ion vibration within the potential well to universal Jonscher’s power law dependence triggered by ion hopping between potential wells or cages. Thermal activation energy for single potential well was found to be 0.48±0.05 eV from cross over points. Ionic conduction and relaxation processes were rationalized by modulus formalism. The promising dielectric properties (relatively high ε' and low tan δ) of the BBO glasses were attributed to high density (93 % of its crystalline counterpart), high polarizability and low mobility associated with heavy metal cations, Bi3+. Optical band gap obtained for BBO glasses was found to be 2.6 eV. The refractive index measured for these glasses was 2.25±0.05 at λ=543 nm. Nonlinear refraction and absorption studies were carried out on BBO glasses using z-scan technique at λ=532 nm of 10 ns pulse width. The nonlinear refractive index obtained was n2=12.1x10-14 cm2/W and two-photon absorption coefficient was β=15.2 cm/GW. The n2 and β values of the BBO glasses were higher than that reported for high index bismuth based oxide glass systems in the literature. These were attributed to the high density, high linear refractive index, low band gap and two-photon absorption associated with these glasses. The electronic origin of large nonlinearities was discussed based on bond-orbital theory. Thesis ends with summary and conclusions followed by prospective views, though each chapter comprises conclusions associated with complete list of references. Patent, publications and conference proceedings that are listed below are largely based on the studies conducted as a part of the research work reported in the present thesis.

Page generated in 0.155 seconds