• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • 1
  • Tagged with
  • 15
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nanocrystallization and Amorphization of Zr Base Alloys during Accumulative Roll Bondin

Hsieh, Pei-Ju 12 July 2004 (has links)
The amorphous alloys have attracted great attention due to their characteristics and future potential. This research is intended to synthesis new amorphous alloy with high glass forming ability as well as low density. The addition of lighter-weight elements such as Al, Ti, Zr, Ni and Cu are tried. The selected vitrification methods in this study are solid-state accumulated roll bonding (ARB) and arc-melting of multi-element alloys. Although the procedures of solid-state reaction are more complicated than that of casting, the influence of cooling rate on amorphization process is not important. Various Zr based binary, ternary, and pentanary alloys are synthesized by the ARB method. Besides, two pentanary alloys are also developed by arc melting method for the properties comparison with those made by ARB. The evolutions of hardness, strain accumulation, the enhanced diffusion, nanocrystalline phase size, amorphous volume fraction, elastic modulus, and relative energy states in various Zr based alloy systems during ARB are characterized and analyzed by transmission electron microscopy (TEM), in correlation with X-ray diffraction results. It appears that compatible initial foil hardness would be most beneficial to the nanocrystallization and amorphization processes during the room temperature ARB; the influence would overwhelm the atomic size effect (i.e., the anti-Hume-Rothery rule) applicable for solidification processing such as drop casting or melt spinning. Meanwhile, the estimated diffusion rates during ARB are higher by several orders of magnitude than the lattice diffusion in bulk materials and the hardness is seen to increase with increasing ARB cycles. The last stage for the nanocrystalline phase to suddenly transform into the amorphous state is examined, coupled with thermodynamic analysis. From the experimental observations and interfacial energy calculations for multilayered films, it is demonstrated that the rapid increase of interfacial free energy of the nanocrystalline phases with increasing ARB cycles appears to be a determining role in enhancing amorphization process. The local spatial distributions of the nanocrystalline and amorphous phases are seen under TEM to be non-uniform, varying significantly in size and quantity in different regions. The diffraction spots and rings in the TEM diffraction patterns are still originated from the pure elements, meaning that the nanocrystalline phases are those unmixed hard particles left from the previous severe deformation and diffusion processes. A critical size of the nanocrystalline phases around 3 nm is consistently observed in all binary, ternary, and pentanary Zr-X based alloys, below the critical size a sudden transformation from the nanocrystalline to amorphous state would occur. Finally, the hardness and Young¡¦s modulus of the nanocrystalline and amorphous materials are estimated based on the microhardness results. On the other hand, a pentanary alloy (according to the composition of the synthesized ARB specimens) is also made by the arc melting method for comparison. The sharp peaks are still observed in XRD pattern of the as-melted alloys. Hence, the melt spinning method is followed. A nearly completely amorphous state is obtained in the melt spun alloy. The hardness readings of the prepared alloys are all significantly higher than those typically for metallic alloys. Moreover, the resulting Zr based amorphous alloys made by ARB possess glass transition and crystallization temperatures similar to those processed by melt spinning or drop casting.
2

Pressure-induced disorder in bulk and nanometric SnO2 / Désordre induite par la pression sur le SnO2 massif et nanométrique

Thomeny Girao, Helainne 24 September 2018 (has links)
Les matériaux nanométriques ont fait l'objet d'un intérêt de recherche important car ils présentent de nouvelles propriétés physiques et chimiques par rapport aux échantillons massifs. En ce qui concerne les nanomatériaux, l'effet de taille et l'énergie de surface sont généralement invoqués, même si les concepts sous-jacents ne sont pas clairs. Dans cette thèse, la question principale à laquelle nous voulons répondre est : quels sont les principaux paramètres qui régissent la stabilité structurelle du SnO2 à l’échelle nanométrique sous haute pression comparé aux échantillons de SnO2 massifs ? La combinaison de la haute pression et de la taille des particules est particulièrement importante pour comprendre la structure de ces nanoparticules et l'effet des défauts et de l'énergie de surface sur leur stabilité de phase, car, en gardant la taille des particules constante, l'augmentation de la pression permettra l'exploration les paysages énergétiques du système. De plus, la pression et la taille sont deux paramètres qui peuvent être utilisés conjointement pour stabiliser les nouvelles phases. L'intérêt de l'étude des nanoparticules sous haute pression est au moins double : (i) acquérir une compréhension fondamentale de la thermodynamique lorsque l'énergie interfaciale devient de la même ampleur que l'énergie interne (ii) pour stabiliser de nouvelles structures potentiellement potentielles intérêt en tant que matériaux fonctionnels. Dans ce travail, nous avons utilisé la spectroscopie Raman comme principale méthode de caractérisation. Pour les échantillons de SnO2 massif, nous avons utilisé la théorie de la percolation pour expliquer la désordre « partiel » du sous-réseau oxygène qui apparaît lorsque la pression augmente, ce qu’on appelle désordre « partiel » induite par la pression. Et, en étudiant les nanoparticules de SnO2, nous avons utilisé des simulations ab initio pour expliquer l'apparition de ce type de désordre, cet à dire, le désordre du sous-réseau anionique lorsque la pression augmente. De cette façon, nous proposons d'obtenir une compréhension fondamentale du SnO2 massif et nanométrique, sous pression / Nanosized materials have been the focus of an extensive interest research as they present new physical and chemical properties in comparison to their bulk equivalent. When dealing with nanomaterials, the size effect and the surface energy are generally invoked, even though the underlying concepts are not clear. In this thesis, the main question that we want to answer is: what are the main parameters which govern the structural stability at the SnO2 nanometric under high pressure in comparison to its bulk counterpart? The combination of high pressure and particle size is particularly important in order to understand the nanoparticle structure, and the effect of the defects and of the surface energy on phase stability. By maintaining the size of the particle constant, the pressure will allow the energy landscapes of the system to be explored. In addition, pressure and size are two parameters that can be used conjointly in order to stabilize new phases. So, the interest of studying nanoparticles under the high-pressure is at least two-fold: (i) to gain a fundamental understanding of thermodynamics when the interfacial energy reaches the same magnitude as the internal energy (ii) to stabilize new structures that may have potential interest as functional materials. In this work, we used Raman spectroscopy as the main characterization method. In the study of SnO2 bulk samples, we used percolation to explain the “partial” disorder of the oxygen sublattice which appears in the powders when the pressure increases; and for studying SnO2 nanoparticles, we used ab initio simulations to explain the appearance of this kind of disorder, i.e. the anionic sublattice disorder in SnO2 nanoparticle samples. In this way, we propose to obtain a fundamental understanding of SnO2 bulk and nanoparticles under pressure
3

Ion-beam processes in group-III nitrides

Kucheyev, Sergei Olegovich, kucheyev1@llnl.gov January 2002 (has links)
Group-III-nitride semiconductors (GaN, InGaN, and AlGaN) are important for the fabrication of a range of optoelectronic devices (such as blue-green light emitting diodes, laser diodes, and UV detectors) as well as devices for high-temperature/high-power electronics. In the fabrication of these devices, ion bombardment represents a very attractive technological tool. However, a successful application of ion implantation depends on an understanding of the effects of radiation damage. Hence, this thesis explores a number of fundamental aspects of radiation effects in wurtzite III-nitrides. Emphasis is given to an understanding of (i) the evolution of defect structures in III-nitrides during ion irradiation and (ii) the influence of ion bombardment on structural, mechanical, optical, and electrical properties of these materials. ¶ Structural characteristics of GaN bombarded with keV ions are studied by Rutherford backscattering/channeling (RBS/C) spectrometry and transmission electron microscopy (TEM). Results show that strong dynamic annealing leads to a complex dependence of the damage buildup on ion species with preferential surface disordering. Such preferential surface disordering is due to the formation of surface amorphous layers, attributed to the trapping of mobile point defects by the GaN surface. Planar defects are formed for a wide range of implant conditions during bombardment. For some irradiation regimes, bulk disorder saturates below the amorphization level, and, with increasing ion dose, amorphization proceeds layer-by-layer only from the GaN surface. In the case of light ions, chemical effects of implanted species can strongly affect damage buildup. For heavier ions, an increase in the density of collision cascades strongly increases the level of stable implantation-produced lattice disorder. Physical mechanisms of surface and bulk amorphization and various defect interaction processes in GaN are discussed. ¶ Structural studies by RBS/C, TEM, and atomic force microscopy (AFM) reveal anomalous swelling of implanted regions as a result of the formation of a porous structure of amorphous GaN. Results suggest that such a porous structure consists of N$_{2}$ gas bubbles embedded into a highly N-deficient amorphous GaN matrix. The evolution of the porous structure appears to be a result of stoichiometric imbalance, where N- and Ga-rich regions are produced by ion bombardment. Prior to amorphization, ion bombardment does not produce a porous structure due to efficient dynamic annealing in the crystalline phase. ¶ The influence of In and Al content on the accumulation of structural damage in InGaN and AlGaN under heavy-ion bombardment is studied by RBS/C and TEM. Results show that an increase in In concentration strongly suppresses dynamic annealing processes, while an increase in Al content dramatically enhances dynamic annealing. Lattice amorphization in AlN is not observed even for very large doses of keV heavy ions at -196 C. In contrast to the case of GaN, no preferential surface disordering is observed in InGaN, AlGaN, and AlN. Similar implantation-produced defect structures are revealed by TEM in GaN, InGaN, AlGaN, and AlN. ¶ The deformation behavior of GaN modified by ion bombardment is studied by spherical nanoindentation. Results show that implantation disorder significantly changes the mechanical properties of GaN. In particular, amorphous GaN exhibits plastic deformation even for very low loads with dramatically reduced values of hardness and Young's modulus compared to the values of as-grown GaN. Moreover, implantation-produced defects in crystalline GaN suppress the plastic component of deformation. ¶ The influence of ion-beam-produced lattice defects as well as a range of implanted species on the luminescence properties of GaN is studied by cathodoluminescence (CL). Results indicate that intrinsic lattice defects mainly act as nonradiative recombination centers and do not give rise to yellow luminescence (YL). Even relatively low dose keV light-ion bombardment results in a dramatic quenching of visible CL emission. Postimplantation annealing at temperatures up to 1050 C generally causes a partial recovery of measured CL intensities. However, CL depth profiles indicate that, in most cases, such a recovery results from CL emission from virgin GaN, beyond the implanted layer, due to a reduction in the extent of light absorption within the implanted layer. Experimental data also shows that H, C, and O are involved in the formation of YL. The chemical origin of YL is discussed based on experimental data. ¶ Finally, the evolution of sheet resistance of GaN epilayers irradiated with MeV light ions is studied {\it in-situ}. Results show that the threshold dose of electrical isolation linearly depends on the original free electron concentration and is inversely proportional to the number of atomic displacements produced by the ion beam. Furthermore, such isolation is stable to rapid thermal annealing at temperatures up to 900 C. Results also show that both implantation temperature and ion beam flux can affect the process of electrical isolation. This behavior is consistent with significant dynamic annealing, which suggests a scenario where the centers responsible for electrical isolation are defect clusters and/or antisite-related defects. A qualitative model is proposed to explain temperature and flux effects. ¶ The work presented in this thesis has resulted in the identification and understanding of a number of both fundamental and technologically important ion-beam processes in III-nitrides. Most of the phenomena investigated are related to the nature and effects of implantation damage, such as lattice amorphization, formation of planar defects, preferential surface disordering, porosity, decomposition, and quenching of CL. These effects are often technologically undesirable, and the work of this thesis has indicated, in some cases, how such effects can be minimized or controlled. However, the thesis has also investigated one example where irradiation-produced defects can be successfully applied for a technological benefit, namely for electrical isolation of GaN-based devices. Finally, results of this thesis will clearly stimulate further research both to probe some of the mechanisms for unusual ion-induced effects and also to develop processes to avoid or repair unwanted lattice damage produced by ion bombardment.
4

Theory of phase transitions in disordered crystal solids

Li, Huaming 29 June 2009 (has links)
Solid-state amorphization of a crystalline solid to an amorphous phase is extensively studied as a first order phase transition at low temperature for almost thirty years. In this dissertation, we report the recent progress on phenomenological models employed for thermodynamic description of macroscopic systems and fluctuations and nucleation of mesoscopic inhomogeneous systems in binary solid solutions under polymorphic constraints with no long-range diffusion involved. Based on our understanding on atomic picture of solid-state amorphization in binary solid solutions, we propose a Landau free energy to describe amorphization as the first order phase transition. The order parameter is defined which represents the loss of long-range translational order. The elastic strain field induced by composition disorder plays the important role through the bilinear coupling with the order parameter. Elastic softening and amorphization happen simultaneously. From the similarity between the melting and amorphization, we use the temperature and composition as two external variables and treat solid-state amorphization as low temperature melting under polymorphic constraints. For homogeneous system, the phase diagrams for endothermic melting and exothermic melting are built separately and the corresponding thermodynamic quantities are presented. A microscopic homogeneous nucleation mechanism is proposed conceptually in binary solid solutions under polymorphic constraints. The formation of an amorphous embryo is initiated from the composition modulation in the crystal state and a subsequent polymorphous nucleation within the as-formed heterophase fluctuation. This homogeneous nucleation path is thought to be associated with the nonlinear energy localization mechanism connected with the localized large-amplitude excitations of atoms, which are induced by nonlinear and disorder. A Landau-Ginzburg free energy is constructed to describe the critical nucleus and the growth of the new phase in one-dimensional systems. Analytical and numerical methods contribute to the understanding the fluctuations and nucleation processes. Size-dependent melting and amorphization in nanosolids are investigated. Two models are proposed for nanocrystalline solid solutions to glass transformations. Based on the thin film model with finite thickness, we build one-dimensional Landau-Ginzburg approach, which includes surface contribution and size dependence, and numerical results do show similarity with experimentsâ results qualitatively.
5

In situ and ex situ characterization of the ion-irradiation effects in third generation SiC fibers / Caractérisation in situ et ex situ des effets d'irradiation aux ions dans les fibres SiC de troisième génération

Huguet-Garcia, Juan Francisco 02 October 2015 (has links)
L'utilisation des fibres SiC Tyranno SA3 (TSA3) et Hi Nicalon S (HNS) pour le renforcement de composites céramiques dédiées aux applications nucléaires impose l'étude de leur stabilité microstructurale et de leur comportement mécanique sous irradiation. La cinétique d'amorphisation des fibres a été étudiée et comparée à celle d'un matériau modèle, 6H-SiC monocristallin, sans que des différences significatives puissent être observées. La dose seuil d'amorphisation totale a été évaluée à ~0,4 dpa à température ambiante et aucune amorphisation complète n'a pas être obtenue pour des températures d'irradiation supérieures à 200 ºC. Les échantillons amorphes ont ensuite été recuits thermiquement ce qui a conduit, pour des températures élevées, à leur recristallisation mais également à une fissuration et une délamination de la zone irradiée. Ce processus d'endommagement était activé thermiquement avec une énergie d'activation de 1,05 eV. En ce qui concerne le comportement mécanique, le fluage d'irradiation des fibres TSA3 a été étudié en utilisant une machine de traction in situ implantée sur deux plateformes d'irradiation aux ions. On montre que sous irradiation ces fibres se déforment en fonction du temps avec des chargements thermique et mécanique où le fluage thermique est négligeable. Cette déformation est plus élevée pour les faibles températures d'irradiation en raison d'un couplage entre le gonflement et le fluage d'irradiation. Pour des températures voisines de 1000 ºC, le gonflement devient négligeable ce qui permet l'étude spécifique du fluage d'irradiation dont la vitesse de déformation présente une dépendance linéaire au flux d'ions. / The use of Tyranno SA3 (TSA3) and Hi Nicalon S (HNS) SiC fibers as reinforcement for ceramic composites for nuclear applications requires the characterization of its structural stability and mechanical behavior under irradiation. Ion-amorphization kinetics of these fibers have been studied and compared to the model material, i.e. 6H-SiC single crystals, with no significant differences. For all samples, full amorphization threshold dose yields ~0.4 dpa at room temperature and complete amorphization was not achieved for irradiation temperatures over 200 ºC. Successively, ion-amorphized samples have been thermally annealed. It is reported that thermal annealing at high temperatures not only induces the recrystallization of the ion-amorphized samples but also causes cracking and delamination. Cracking is reported to be a thermally driven phenomenon characterized by activation energy of 1.05 eV. Regarding the mechanical irradiation behavior, irradiation creep of TSA3 fibers has been investigated using a tensile device dedicated to in situ tests coupled to two different ion-irradiation lines. It is reported that ion-irradiation (12 MeV C4+ and 92 MeV Xe23+) induces a time-dependent strain under loads where thermal creep is negligible. In addition, irradiation strain is reported to be higher at low irradiation temperatures due to a coupling between irradiation swelling and irradiation creep. At temperatures near 1000 ºC, irradiation swelling is minimized hence allowing the characterization of the irradiation creep. Irradiation creep rate is characterized by a linear correlation between the ion flux and the strain rate and square root dependence with the applied load.
6

Characterizing the Effects of Mechanical Alloying on Solid State Amorphization of Nanoscaled Multilayered Ni-Ti

Monsegue, Niven 27 August 2010 (has links)
Equiatomic composition of Ni and Ti was cryomilled with varying milling times to create Ni-Ti lamella structures with average spacings of 50 nm, 470 nm, and 583 nm in powder particles to vary the interfacial surface area per volume. These surfaces form interfaces for diffusion that are essential for solid state amorphization during low temperature annealing. To compare solid state amorphization in a relatively defect free multilayer system, elemental Ni and Ti were deposited by electron beam physical vapor deposition on titanium plates with comparable spacing as above. Both milled and deposited multilayers were annealed between 225 and 350°C for up to 50 hours. X-ray diffraction characterization and in situ annealing was conducted on cryomilled and deposited multilayers of Ni-Ti. Based on this characterization, an amorphization model based on the Johnson-Mehl-Avrami nucleation and growth equation has been established to predict the amorphization of both cryomilled and deposited multilayers. Cryomilled powders experienced much larger amorphization rates during annealing than that of deposited multilayer structures, for all layer spacings. This superior amorphization is seen despite the formation of amorphous phase during the milling process; the amount of which increases with increasing milling time. The difference in amorphization rates between cryomilled and deposited multilayers is attributed to excess driving force due to the extensive preexisting defects in the powders caused by cryomilling. Serial 3D reconstruction of cryomilled Ni-Ti powders was done by scanning electron microscopy and focused ion beam. Through 3D reconstruction it was observed that a random and non-linear lamella structure has been formed in cryomilled powders. Furthermore, lamellar spacing was seen to become smaller with increased milling time while at the same time becoming more homogeneous through the material's volume. 3D reconstruction of cryomilled Ni-Ti offers a unique insight into the microstructures and surface areas of cryomilled powder particles that has never been accomplished. / Ph. D.
7

Functionalization and processing of porous powders into hierarchically porous monoliths

Vasiliev, Petr January 2009 (has links)
Inorganic porous materials are widely used in a number of applications, where is a need to functionalize and produce materials with a multiscale porosity. The first part of the thesis describes how a novel and facile powder processing approach, using pulsed current processing (PCP) or, as it is commonly called, spark plasma sintering (SPS), has been employed to produce mechanically stable, hierarchically porous bodies from different porous powders. Surfactant-templated mesoporous spheres were PCP-treated to yield meso/macro porous monoliths. The bimodal pore size can be tailored by choice of templating molecules in the aerosol-assisted synthesis process and by the particle size of the spheres. Diatomite powders were used to produce macro/macroporous monoliths. The densification behaviour of this inexpensive and renewable macroporous raw material was evaluated in detail, and an optimum temperature range was identified where the PCP process yields mechanically strong monoliths. Binder-less, hierarchically porous zeolite monoliths were produced from various zeolite powders, e.g. silicalite-1, ZSM-5 and zeolite Y. Line-broadening analysis of X-ray powder diffraction data by the Rietveld method and electron microscopy showed that the formation of strong interparticle bonds during the PCP process is associated with a local amorphization reaction that is induced by the high contact stress and temperature. Xylene isomerisation studies showed that binder-less ZSM-5 monoliths display a high catalytic selectivity. Direct (in-situ) nanoparticle functionalization of surfactant templated mesoporous silica particles has also been demonstrated. Pre-synthesized TiO2 nanoparticles were dispersed in a precursor solution, containing surfactant and silica source, and processed in an aerosol-generator to produce spherical nanoparticle-functionalized mesoporous particles.
8

Investigating Stability in Amorphous Solid Dispersions: A Study of the Physical and Chemical Stability of Two Salt Forms of Thiamine and the Physical Stability of Citric Acid

Seda Tuncil (5930339) 03 January 2019 (has links)
The majority of water soluble vitamin and organic acid food additives are distributed in their crystalline forms. However, when they are combined with water and other food ingredients and then exposed to a variety of unit operations, there is potential to solidify these initially crystalline ingredients in the amorphous state. Amorphous solids are generally less chemically and physically stable than their crystalline counterparts. To ensure nutrient delivery to the consumer and fulfill labeling laws, deterioration of nutrients due to unintentional amorphization is undesirable. Additionally, the potential for recrystallization of an amorphous ingredient may alter texture and redistribute water. Hence, solid state form is a critical factor dictating the stability of food formulations. Building on earlier work from my M.S. degree that demonstrated thiamine chloride hydrochloride could solidify in the amorphous state in the presence of a variety of polymers (Arioglu-Tuncil et al., 2017), a major goal of this study was to develop a comprehensive understanding of the physical and chemical stability of amorphous forms of two thiamine salts, thiamine chloride hydrochloride (TClHCl) and thiamine mononitrate (TMN), in comparison to their crystalline counterparts and each other. The objectives for this part of the work were to investigate amorphization/recrystallization tendencies of TMN and TClHCl in solid dispersions, as well as chemical stability of thiamine in the solid dispersions to understand the impact of vitamin form, physical state (amorphous vs. crystalline), polymer type and features (Tg, hygroscopicity, and ability for intermolecular interactions), storage conditions, proportion of vitamin to polymer,and pre-lyophilized solution pHs on thiamine degradation and the physical stability of dispersions. Thiamine degraded more when in the amorphous form compared to in the crystalline state. Additionally, polymer type and vitamin proportion influenced thiamine degradation, where thiamine degraded more when it was present in lower concentrations (in dispersions that had higher Tgs), and it was chemically more stable when a polymer with greater intermolecular interactions with the vitamin was used. As storage RH increased, variably hygroscopicities of the polymers resulted in different thiamine degradation rates. The pre-lyophilization pHs of the solutions had a significant impact on thiamine stability in the solid dispersions. Similar to thiamine salts, citric acid is a commonly used food ingredient with a high crystallization tendency. Following similar experimental designs for documenting the recrystallization tendencies of citric acid in amorphous solid dispersions to those used in the thiamine studies, hydrogen bonding and/or ionic interactions between polymer and citric acid were found to be the main stabilizing factor for delaying recrystallization, more than polymer Tg and hygroscopicity. The findings of this dissertation provide a powerful prediction approach to physically and chemically stabilize the small compounds in the complex food matrices for the production of high quality food products and ensuring nutrient delivery to target populations.<br>
9

Synthesis and Characterization of Some Low and Negative Thermal Expansion Materials

Varga, Tamas 27 April 2005 (has links)
Synthesis and Characterization of Some Low and Negative Thermal Expansion Materials Tamas Varga 370 pages Directed by Dr. Angus P. Wilkinson The high-pressure behavior of several negative thermal expansion materials was studied by different methods. In-situ high-pressure x-ray and neutron diffraction studies on several compounds of the orthorhombic Sc2W3O12 structure revealed an unusual bulk modulus collapse at the orthorhombic to monoclinic phase transition. In some members of the A2M3O12 family, a second phase transition and/or pressure-induced amorphization were also seen at higher pressure. The mechanism for volume contraction on compression is different from that on heating. A combined in-situ high pressure x-ray diffraction and absorption spectroscopic study has been carried out for the first time. The pressure-induced amorphization in cubic ZrW2O8 and ZrMo2O8 was studied by following the changes in the local coordination environments of the metals. A significant change in the average tungsten coordination was found in ZrW2O8, and a less pronounced change in the molybdenum coordination in ZrMo2O8 on amorphization. A kinetically frustrated phase transition to a high-pressure crystalline phase or a kinetically hindered decomposition, are likely driving forces of the amorphization. A complementary ex-situ study confirmed the greater distortion of the framework tetrahedra in ZrW2O8, and revealed a similar distortion of the octahedra in both compounds. The possibility of stabilizing the low thermal expansion high-temperature structure in AM2O7 compounds to lower temperatures through stuffing of ZrP2O7 was explored. Although the phase transition temperature was suppressed in MIxZr1-xMIIIxP2O7 compositions, the chemical modification employed was not successful in stabilizing the high-temperature structure to around room temperature. An attempt has been made to control the thermal expansion properties in materials of the (MIII0.5MV0.5)P2O7-type through the choice of the metal cations and through manipulating the ordering of the cations by different heat treatment conditions. Although controlled heat treatment resulted in only short-range cation ordering, the choice of the MIII cation had a marked effect on the thermal expansion behavior of the materials. Different grades of fluorinert were examined as pressure-transmitting media for high-pressure diffraction studies. All of the fluorinerts studied became nonhydrostatic at relatively low pressures (~1 GPa).
10

Advanced Focused Ion Beam: Preparation Optimization and Damage Mitigation

Huang, Jin 10 April 2019 (has links)
Focused Ion Beam (FIB) is an important analytical and sample modification technique in the field of electron and ion microscopy. It has been widely used in different kinds of applications including semiconductor device failure analysis, material science research, nanoscale 3D tomography, as well as microstructure prototyping and surface modification. Recent developments from the rapid growing industry and our frontier research have posted new challenges on the FIB technology itself. Higher resolution has been realized by state-of-the-art hardware infrastructures and less sample destruction has been achieved by efficient operation recipes. In this doctoral thesis, a study of advanced Focused Ion Beam sample preparation is presented, with the goal to prepare samples with low or no damage. The study is divided into two aspects according to various aspects in the FIB applications: sample damage and in-situ preparation. In the first aspect, sample damage, namely amorphization, ion implantation and FIB milling rate are investigated on crystalline silicon specimens with a gallium FIB tool. To study the ion-beam induced amorphous layer thickness under certain conditions, silicon specimens were prepared by FIB into specific geometry, so that the induced amorphous layer can be imaged and the thickness can be determined quantitatively using Transmission Electron Microscopy (TEM). Atom Probe Tomography (APT) was carried out to study the implanted ion concentration of gallium FIB prepared silicon specimens. In addition, the gallium FIB milling rate was also studied for a silicon substrate using Scanning Electron Microscopy (SEM). These experimental results provide detailed information of beam-sample interactions from the FIB sample preparation. In order to gain a systematic understanding of the processes, as well as to be able to predict the outcome of a specific FIB recipe, a physics model and an adapted algorithm (TRIDYN) based on Binary Collision Approximation (BCA) were used for the simulation of FIB processes. The predicted results based on simulations were compared with experiments. The proposed model was successfully validated by the experimental results, i.e., the TRIDYN algorithm has the capability to provide predictions for the multi- step FIB sample preparation process and the respective recipes. The other aspect involves a novel design of a hardware configuration of a SEM/FIB system add-on to perform in-situ surface modification tasks such as argon ion polishing of specimens. This Beam Induced Polishing System (BIPS) overcomes the disadvantages that some of the ex-situ methods have, and it completes some of the advanced FIB recipes for extremely thin and pristine specimens. In the thesis, the functionality of a BIPS system is explained in detail, and first experimental results are shown to demonstrate the proof of concept of the system. To summarize, this doctoral thesis presents an adapted algorithm, which is validated by experiments, to simulate the multi-step Focused Ion Beam process for recipes of low- damage sample preparation; A novel in-situ experiment system BIPS is also introduced, providing an option to complement SEM/FIB systems for advanced FIB sample preparation recipes.

Page generated in 0.1308 seconds