Spelling suggestions: "subject:"nanohardness array""
1 |
Optofluidic nanostructures for transport, concentration and sensingEscobedo, Carlos 24 August 2011 (has links)
This thesis presents optofluidic nanostructures for analyte transport, concentration and sensing. This work was part of a larger collaborative project between the BC Cancer Agency and the departments of Chemistry, Electrical and Mechanical Engineering at the University of Victoria. In this work, arrays of nanoholes are used as optofluidic platforms for sensing, combining the characteristics of these nanostructures for both fluidic transport and plasmonic (optical) sensing. Two different modes are considered: flow-over mode, where the sample solution containing the analyte flows on top of the nanohole arrays, and a novel flow-through mode, where the nanoholes are used as nanochannels, enabling solution transport and analyte sieving. Flow-through nanohole array operation and sensing is first demonstrated, offering a six-fold improvement in sensor response compared to established flow-over sensing formats. Through a subsequent theoretical scaling analysis and computational analyses, the benefits of the flow-through nanohole sensing format are further quantified. A first analysis is dedicated to study the enhancement offered by the flow-through operation mode using a mass transport approach. A second analysis offers an ample study of benefits and limitations of the flow-through nanostructure operation using the combination of mass transport and binding kinetic parameters for different analytes with characteristics of clinical relevance. The mass transport analysis indicates much higher analyte collection efficiency (~ 99%) offered by the flow-through mode, compared to the flow-over platform (~ 2%). The analysis including both mass transport and binding kinetics demonstrate up to 20-fold improvement in response time for typical biomarkers.
This thesis also presents the use of the flow-through optofluidic platform as an active analyte concentrator. In combination with a pressure bias, an electric field is used to concentrate electrically charged analyte for subsequent sensing. Fluorescein enrichment of 180-fold in 60 s was achieved, and 100-fold enrichment and simultaneous surface plasmon resonance (SPR) sensing of a protein (bovine serum albumin, BSA) was demonstrated. These experiments represent the first active utilization of a nanohole metallic layer as an electrode, and the first demonstration of a photonic nanostructure achieving both concentration and sensing of analytes.
Towards the integration of optofluidic nanostructures into microfluidic environments for portable lab-on-chip diagnostic systems, this dissertation also includes the development of two nanohole array based sensing systems with simple flow-over operation. The first system consisted of a hand-held device with a dual-wavelength light source to increase the spectral diversity. The second system consisted of nanohole arrays integrated with a microfluidic concentration gradient generator for the detection and quantification of ovarian cancer antibody and antigen.
Additionally, this dissertation includes a novel technique to actuate liquids in microchannels through ground-directed electric discharges. Experiments demonstrate average fluid velocities on the order of 5cm/s and applicability of the technique in serpentine channels, for on-demand fluid routing, to initiate a mixing process, and through an on-chip integrated microelectrode. / Graduate
|
2 |
Polarization Conversion Mediated Surface Plasmon Polaritons in Extraordinary Optical Transmission through a Nanohole ArraysDebroux, Romain L. 29 May 2018 (has links)
Since Ebbesen's seminal work in 1998 observing extraordinary optical transmission (EOT) through nanohole arrays, much research has focused on the role of surface plasmon polaritons (SPPs) in EOT. While the energy and momentum conditions have become clear, no consensus has been reached on the role of incident light polarization. This study presents a simple model that captures Bloch-SPP excitation, including the role of polarization, in general periodic plasmonic structures. Our model predicts that under certain conditions polarization conversion should occur in EOT light transmitted through the nanohole array. We experimentally measure polarization conversion in EOT and compare the experimentally obtained results to the predictions of our model. Using numerical simulations, we tie the far field experimental results to the near field underlying physics described by our model. In using polarization conversion to provide evidence supporting our model, we also establish a novel approach to achieving polarization conversion based on SPPs instead of hole shape or other techniques in literature, and present reasons why this approach to achieving polarization conversion may be better suited for applications in biomedical sensing and optical elements. / Master of Science / In 1998, Ebbesen et al¹ observed that when light is shown on a metal nanofilm perforated with nanoholes more light appears on the other side of the metal film than was incident on the nanoholes. The unexpectedly high transmission of light through the nanohole array was termed extraordinary optical transmission (EOT), and quickly found applications in diverse fields such as biomedical sensing<sup>13,14</sup>, energy harvesting<sup>12,31</sup>, and nonlinear optics<sup>12–14,24</sup> . As the importance of EOT in applications became clear, interest developed in understanding the fundamental physics involved. Over the next 20 years, researchers showed that the incident light (made up of electromagnetic fields) excites conduction electrons on the surface of the metal film¹¹ . Specifically, the light and the electrons couple to form quasiparticles known as surface plasmon polaritons (SPP) which propagate along the surfaces of the metal film. The SPPs on the back surface of the metal film then radiate free space transmitted light, which is observed as EOT. However, much of the physics involved how SPPs mediate EOT has remained unclear.
The first focus of this work is theoretical, presenting a microscopic model for SPP mediated EOT. In contrast to many groups which aim to characterize SPPs from their far field properties, our model focuses on the near field microscopic physics and presents the far field properties as a consequence of the near field physics. Since the near field cannot be probed iv experimentally, we use numerical simulations to both verify our model’s predictions in the near field and predict the properties that should be measured in the far field.
The second focus of this work is more applications driven. We notice that our model predicts that under certain conditions SPPs should cause a phenomenon known as polarization conversion to occur, which is when the polarization of the transmitted light is different from the polarization of the incident light. We experimentally measure the predicted polarization conversion, thereby providing substantial experimental evidence in support of our theoretical model. Our novel approach to achieving polarization conversion based on the behavior of SPPs differs substantially from the approaches in literature (usually based on hole shape²⁴). We present the reasons why our SPP-based approach to achieving polarization conversion is more robust to fabrication imperfections than the conventional approaches, and describe how our approach could affect various applications.
|
3 |
Investigation of New Nanomaterials for Sensor Applications and Property EnhancementBachus, Matthew J. 06 August 2012 (has links)
No description available.
|
4 |
Design, fabrication, and electrochemical surface plasmon resonance analysis of nanoelectrode arraysAtighilorestani, Mahdieh 30 August 2017 (has links)
Recent advances in nanofabrication techniques have opened up new avenues and numerous possible applications in both nanoscale electrochemistry and analytical nanoscience by enabling the fabrication of reproducible nanoelectrodes with different new geometries. Nanoelectrodes exhibit advantages including enhanced mass transport, higher current densities, improved signal-to-noise ratios, and lower ohmic drop. In this dissertation, the use of nanoelectrodes in the electrochemical response properties investigations or in the spectroelectrochemical studies is the unifying factor among all the chapters. First (in Chapter 4), we presented a direct comparison between the electrochemical characteristics of two finite nanoelectrodes arrays with different geometries: 6 × 6 recessed nanodiscs and nanorings microarrays. Using computational methods, it was demonstrated that the electrode geometry’s parameters have a drastic influence on the mass transport properties of the nanoelectrodes. The results presented here are the first combination of experimental and numerical studies that elucidate the transport on nanoring electrode arrays. The comparison of the electrochemical behavior between nanostructures using full 3D simulations is also unique.
Second, we have provided a comprehensive numerical study on the redox cycling performance properties of a 6 × 6 recessed nanorings-ring electrode array configuration. The simulation results were in good agreement with the experimental data. After validating the model against experiments, a comprehensive computational investigation revealed avenues to optimize the performance of the structure in terms of geometric parameters and scan rates.
The second half of this dissertation is comprised of the spectroelectrochemical studies. The combination of surface plasmon resonance with electrochemistry presents new paths to investigateredox reaction events at the electrode surface since it brings an additional dimension to the classical electrochemical approaches.
Third, we have reported a novel active plasmonic device based on a new switching mechanism for the nanohole electrodes array to bridge between photonics and electronics at nanoscales. The inner surfaces of the nanohole electrodes in the array were coated with an electroconductive polymer, polypyrrole, (PPy). Then, it was shown that light transmitted through the PPy- modified nanohole electrodes can be easily tuned and controled by applying an external potential. We were also able to switch on and off the transmitted light intensity through the modified nanohole arrays by potential steps, demonstrating the potential of this platform to be incorporated into optoelectronic devices.
Finally, we have fabricated larger area plasmonic periodic nanopillar 3D electrodes using a rapid, high-throughput, and cost-effective approach: the laser interference lithography. Then, the electrochemical behavior of these electrodes was investigated both experimentally and computationally. The properties were ‘compared with a flat electrode with an equivalent geometric area. Afterward, we have successfully probed the changes in the concentration of a reversible redox pair near the electrode surface induced by various applied potentials, in an in-situ EC-SPR experiment. / Graduate
|
5 |
Comparison and optimization of extracellular vesicle (EV) capturing on functional thin films for their molecular profiling / Jämförelse och optimering av extracellulär vesikel (EV) infångning på funktionella tunna filmer för deras molekylära profileringMetem, Prattakorn January 2023 (has links)
Extracellular vesicles (EVs) are lipid bilayer encapsulated nanoparticles which have emerged as an excellent source of biomarkers for multiple diseases, including cancer. However, they are highly heterogeneous in their molecular compositions which remains a major challenge hindering the utilization of their biomarker potential. A single-EV analysis is essential to both discovery and detect EVs that carry disease-specific signature. In this work, we designed plasmonic nanohole array for capturing single EVs and perform fluorescence detection of their membrane proteins by exploiting plasmonic amplification of the fluorescence signal. The design of the array was optimized using COMSOL Multiphysics-based simulation. Nanohole arrays with three different periodicities were fabricated on aluminum thin film on glass substrate. The substrates were then functionalized with three different methods for investigation of antibody-free capturing techniques, which are electrostatic interaction, hydrophobic interaction, and size-selective capturing. After surface functionalization with each of the techniques, genetically engineered EVs expressing mNeonGreen (mNG) were incubated and their capture efficiency were compared. The presence of single-EVs within plasmonic nanoholes was verified through both fluorescence analysis and atomic force microscopy (AFM). Fluorescence intensities of mNG-EVs recorded with the plasmonic chip with different periodicities showed intensity variations in agreement with the simulation results. Furthermore, the EVs were immunostained with R-phycoerythrin (R-PE) conjugated CD-9 to demonstrate the possibility of general and multimarker fluorescence detection. In a separate experiment, DOPC liposomes were synthesized and their deformability was analyzed by using AFM. The nanohole array provides a basis for a future platform of EV analyses, promising to capture the signature arising from low expressing proteins. / Extracellulära vesiklar (EV) är lipadmembranförsedda nanopartiklar som har dykt upp som en utmärkt källa till biomarkörer för flera sjukdomar, däribland cancer. De är dock mycket heterogena i sina molekylära sammansättningar, vilket skapar en stor utmaning och hindrar utnyttjandet av deras potential som biomarkörer. EV-analys på enpartikelnivå är nödvändig både för att upptäcka och detektera vesiklar som har en sjukdomsspecifik signatur. I detta arbete designade vi en plasmonisk uppsättning av nanohål för att fånga enstaka EVs och utföra fluorescensdetektion av deras membranproteiner genom att utnyttja plasmonisk amplifiering av fluorescenssignaler. Designen av uppsättningen optimerades med hjälp av COMSOL Multiphysics-baserad simulering. Nanohålsuppsättningar med tre olika periodiciteter tillverkades på tunn aluminiumfilm på glassubstrat. Substraten funktionaliserades sedan enligt tre olika metoder för undersökning av antikroppsfria bindningsmetoder. De tre metoderna är elektrostatisk interaktion, hydrofob interaktion och storleksselektiv bindning. Efter ytfunktionalisering med var och en av teknikerna inkuberades vesiklar genetiskt modifierade att uttrycka mNeonGreen (mNG) och deras bindningseffektivitet jämfördes. Närvaron av individuella EVs i plasmoniska nanohål bekräftades genom både fluorescensmikroskopi och atomkraftsmikroskopi (AFM). Fluorescensintensiteter för mNG-EVs registrerades med plasmonchipet med olika periodiciteter och visade intensitetsvariationer i överensstämmelse med simuleringsresultaten. Dessutom immunfärgades vesiklarna med R-fykoerytrin (R-PE) konjugerad CD-9 för att påvisa möjligheten till allmän och multimarkör fluorescensdetektion. I ett separat experiment syntetiserades DOPC-liposomer och deras deformerbarhet analyserades med AFM. Nanohåluppsättningen lägger grund för en framtida plattform för EV-analys, som lovar att fånga signaturen som uppstår från låguttryckande proteiner.
|
6 |
Plazmonické biosenzory založené na zvýšené optické transmisi / Plasmonic biosensors based on extraordinary optical transmissionDršata, Martin January 2017 (has links)
Tato diplomová práce se zabývá rigorózními simulacemi plazmonických biosenzorů založených na jevu zvýšené optické transmise. První část je věnována popisu fyzikálních jevů a poznatků, které tvoří základ pro studium vlastností plazmonických senzorů, a popisu výpočetní metody konečných prvků v časové oblasti, která je využita v této práci. Vlastní výsledky jsou uvedeny v další části, která se zabývá výzkumem citlivosti, rozlišení a dalších charakteristik zvoleného typu plazmonického sensoru, tvořeného sítí kruhových nanoděr v tenké zlaté vrstvě na substrátě nitridu křemíku, v závislosti na řadě jeho geometrických parametrů. Tyto závislosti jsou sledovány ve třech různých případech, a to senzoru umístěného ve vakuu, ponořeného ve vodě a v případě kdy je na zlatém povrchu umístěna tenká dielektrická vrstva, která reprezentuje přítomnost biomolekul uchycených na povrchu senzoru.
|
7 |
Fabrication and Optimization of a Nanoplasmonic Chip for DiagnosticsSegervald, Jonas January 2019 (has links)
To increase the survival rate from infectious- and noncommunicable diseases, reliable diagnostic during the preliminary stages of a disease onset is of vital importance. This is not trivial to achieve, a highly sensitive and selective detection system is needed for measuring the low concentrations of biomarkers available. One possible route to achieve this is through biosensing based on plasmonic nanostructures, which during the last decade have demonstrated impressive diagnostic capabilities. These nanoplasmonic surfaces have the ability to significantly enhance fluorescence- and Raman signals through localized hotspots, where a stronger then normal electric field is present. By further utilizing a periodic sub-wavelength nanohole array the extraordinary optical transmission phenomena is supported, which open up new ways for miniaturization. In this study a nanoplasmonic chip (NPC) composed of a nanohole array —with lateral size on the order of hundreds of nanometer— covered in a thin layer of gold is created. The nanohole array is fabricated using soft nanoimprint lithography on two resists, hydroxypropyl cellulose (HPC) and polymethyl methacrylate (PMMA). An in depth analysis of the effect of thickness is done, where the transmittance and Raman scattering (using rhodamine 6G) are measured for varying gold layers from 5 to 21 nm. The thickness was proved to be of great importance for optimizing the Raman enhancement, where a maximum was found at 13 nm. The nanohole array were also in general found beneficial for additionally enhancing the Raman signal. A transmittance minima and maxima were found in the region 200-1000 nm for the NPCs, where the minima redshifted as the thickness increased. The extraordinary transmission phenomena was however not observed at these thin gold layers. Oxygen plasma treatment further proved an effective treatment method to reduce the hydrophobic properties of the NPCs. Care needs be taken when using thin layers of gold with a PMMA base, as the PMMA structure could get severely damaged by the plasma. HPC also proved inadequate for this projects purpose, as water-based fluids easily damaged the surface despite a deposited gold layer on top.
|
Page generated in 0.0558 seconds