• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2319
  • 1067
  • 583
  • 274
  • 103
  • 47
  • 38
  • 24
  • 23
  • 23
  • 18
  • 18
  • 11
  • 10
  • 8
  • Tagged with
  • 5202
  • 967
  • 823
  • 666
  • 594
  • 478
  • 409
  • 386
  • 368
  • 335
  • 311
  • 301
  • 275
  • 271
  • 263
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Fluoreszenzmarkierte Nanogele auf Poly(glycidol)-Basis - Herstellung, Charakterisierung und deren Interaktion in vitro / Fluorescent Poly(glycidol)-based Nanogels - Synthesis, characterization and their interactions in vitro

Zipplies, Theresa Leonora January 2018 (has links) (PDF)
Ziel dieser Arbeit war die Herstellung fluoreszent markierter Präpolymere sowie deren Optimierung, die kontrollierte und reproduzierbare Synthese von redox-sensitiven und nicht redox-sensitiven NG mit und ohne Fluoreszenzmarkierung in einem durchschnittlichen Partikelgrößenbereich von 150 – 300 nm und mit einer Konzentration > 10*10 Partikel/ml, die Charakterisierung der NG, ihre Untersuchung bezüglich ihrer Stabilität und des Assoziationsverhaltens zu BSA sowie die Erlangung von Erkenntnissen bezüglich des Aufnahmemechanismus der NG in Abhängigkeit vom Transportpeptid Tat. Abschließend kann zusammenfassend gesagt werden: 1. Das große Potential von PG-basierten NG für biologische bzw. medizinische Einsatzgebiete konnte weiter untermauert werden. 2. Das mit Cy5-Alkin markierte PG PG-SH-Cy5 erscheint aufgrund des relativ hohen erreichten Markierungsgrades bei der Herstellung als aussichtsreichster Kandidat für weitere Untersuchungen. Diese Umsetzung besitzt noch Optimierungspotentiale bezüglich einer Verringerung des Polymerverlusts bei der Aufarbeitung, des erreichbaren Markierungsgrades und der Markierungsausbeute. Möglichkeiten, dies zu erreichen, wurden diskutiert. 3. Klare Aussagen über den Einfluss des esterhaltigen bzw. esterfreien Ausgangspolymers PG-SH auf die Konzentration und die Partikelgröße konnten aufgrund einer nicht ausreichenden Datenlage nicht getroffen werden. 4. Die esterhaltigen PG-SH-Moleküle erscheinen aufgrund ihrer Labilität gegenüber Hydrolyse für die NP-Synthese weniger geeignet (geringere Stabilität). 5. Die Charakterisierung der aus den markierten und unmarkierten Ausgangspolymeren hergestellten NG, welche teilweise zusätzlich mit dem Transportpeptid Tat funktionalisiert wurden, erfolgte mittels NTA und zeigt für die meisten Spezies relativ schmale, gut definierte, monomodale Größenverteilungen mit einem Maximum um 100-200 nm im Bereich von ca. 40 – max. 400 nm mit Partikelkonzentrationen im Bereich von 1010 - 1011 Partikeln/ml. 6. Insgesamt konnte gezeigt werden, dass der untersuchte, von PG-SH abgeleitete NP-Typ (z. B. NG_3, redox-sensitiv unmarkiert) aufgrund seiner Einheitlichkeit, Partikelgröße und der Reproduzierbarkeit der Herstellung als gut geeignet für den geplanten Einsatz in biologischen Systemen erscheint. Von den weiter derivatisierten NG erscheinen die folgenden aufgrund der oben geschilderten Kriterien als besonders geeignet für den geplanten Einsatz in biologischen Systemen und weiterer Untersuchungen wert: NG680_(TAT)_1-4 (redox-sensitiv, markiert), NGCy5_(TAT)_1 (redox-sensitiv, markiert), NG_MA_2 (nicht redox-sensitiv, unmarkiert), NGCy7_MA_1 (nicht redox-sensitiv, markiert). Aufgrund des relativ hohen erreichbaren Markierungsgrades bei der Markierung der Ausgangspolymere erscheinen die mit Cy5-markierten Verbindungen als besonders vorteilhaft. 7. Die esterfreien, redox-sensitiven NP erwiesen sich bei 14-tägiger Lagerung unter physiologischen Bedingungen als stabil. Ihre Konzentration nahm über 14 Tage um ca. 60 % vom Ausgangswert ab. Gleichzeitig nahm der Teilchendurchmesser während des Beobachtungszeitraums um ca. 25 % zu. Die Abnahme der Teilchenzahl ist - zumindest teilweise - durch eine Vergrößerung des mittleren Teilchendurchmessers und mögliche Adsorptionseffekte an die Gefäßwände des Versuchsaufbaus zu erklären. 8. Die Konzentration der esterfreien, nicht redox-sensitiven NP verringert sich bei 14-tägiger Inkubation unter physiologischen Bedingungen deutlich auf ca. 10 % des Ausgangswerts. Der mittlere Durchmesser der Partikel bleibt innerhalb des Untersuchungszeitraums innerhalb der Fehlergrenzen konstant. Die starke Abnahme der Partikelkonzentration ist wahrscheinlich auf die Hydrolyse des verwendeten esterhaltigen Crosslinkers PEGDA zurückzuführen. Desweiteren sind Adsorptionsphänomene an Oberflächen des Versuchsaufbaus nicht auszuschließen. Insgesamt hervorzuheben ist die wesentlich höhere Stabiliät der redox-sensitiven NP unter den Versuchsbedingungen. Diese Substanzklasse sollte daher weiter verfolgt werden. 9. Es wurde gezeigt, dass sowohl die NG, die das Aufnahmeprotein Tat enthalten, als auch die NG ohne Tat mit Fluoreszenz-markiertem BSA (8,3 µg/ml) wechselwirken und zusammen mit diesem bei der Zentrifugation abgeschieden werden. Über die Art der Wechselwirkung kann keine Aussage getroffen werden. 10. Durch in vitro Zellaufnahmeuntersuchungen an Hela-Zellen konnte gezeigt werden, dass die mit Tat funktionalisierten, redox-sensitiven, Fluoreszenz-markierten NP von den Zellen aufgenommen werden. Die Aufnahme erfolgt über eine deutlich erkennbare Vesikelbildung, die an der Plasmamembran verstärkt beobachtet werden kann. Im Gegensatz hierzu konnte bei den nicht mit Tat funktionalisierten NP keine vergleichbare in vitro Zellaufnahme beobachtet werden. Die Ergebnisse dieser Arbeit bestätigen insgesamt das große Potential der von Thiol-funktionalisierten PG abgeleiteten NG für die medizinische Forschung und zukünftige Anwendungen in der Diagnostik und Therapie. Es wird eine Reihe von Ansatzpunkten aufgezeigt, auf deren Basis weitere vertiefende Untersuchungen zur Charakterisierung und Optimierung sowie zu zukünftigen nutzbringenden Anwendungen vorgenommen werden sollten. / Summary: Fluorescent Poly(glycidol)-based Nanogels - Synthesis, characterization and their interactions in vitro
322

Design and Development of Intricate Nanomedical Devices through Compositional, Dimensional and Structural Control

Lin, Yun 2012 May 1900 (has links)
Nanomedicine, the medical application of nanotechnology, uses nanoscale objects that exist at the interface between small molecule and the macroscopic world for medical diagnosis and treatment. One of the healthcare applications of nanomedicine is drug delivery: the development of nanoscale objects to improve therapeutics' bioavailability and pharmacokinetics. Shell crosslinked knedel-like nanoparticles (SCKs), that are self assembled from amphiphilic block copolymers into polymeric micelles and then further stabilized with crosslinkers isolated throughout the peripheral shell layer, have been investigated for drug delivery applications that take advantage of their core-shell morphology and tunable surface chemistry. SCKs are attractive nanocarriers because the cores of the SCKs are used for sequestering and protecting guests. The readily adjustable shell crosslinking density allows for gating of the guest transport into and out of the core domain, while retaining the structural integrity of the SCKs. Moreover, the highly functionalizable shell surface provides opportunity for incorporation of targeting ligands for enhanced therapeutic delivery. The optimization of nanoparticle size, surface chemistry, composition, structure, and morphology has been pursued towards maximization of the SCKs' therapeutic efficacy. With distinctively different dimensions, compositions and structures of the core and shell domains of SCKs, and an ability to modify each independently, probing the effects of each is one of the major foci of this dissertation. Utilization of a living radical polymerization technique, reversible addition-fragmentation chain transfer (RAFT) polymerization, has allowed for facile manipulation of the block lengths of the polymer precursors and thus resulted in various dimensions of the nanoparticles. SCKs constructed from poly(acrylic acid)-b-polystyrene (PAA-b-PS) with various chain lengths, have been investigated on the loading and release of doxorubicin (DOX). The effect of PEGylation on paclitaxel (PTX) loaded SCKs on the cell internalization and killing was investigated. Apart from chemotherapies, the SCKs were explored as antimicrobial agents by incorporating silver species. Conjugation of the SCK surface with a protein adhesin through amidation chemistry to promote epithelial cell targeting and internalization was developed. Nanoscale assemblies with complex morphologies constructed from a linear triblock copolymer was investigated. Furthermore, a highly multifunctional nanodevice for imaging and drug delivery functionalized with a chelator for radio-labeling, polyethylene glycol (PEG) for improved biodistribution, targeting ligands, a chromophore and a therapeutic agent was evaluated in vivo as active-targeted delivery of therapeutics.
323

Photochemical 
Strategies
 for 
the 
Synthesis
 of 
Advanced
 Materials

Billone, Paul 19 April 2011 (has links)
This thesis describes the study of a variety of nanoscale materials and the development of novel synthetic strategies for their production. While the focus and bulk of this study have been directed specifically at subwavelength lithography, a significant portion of this thesis research involves nanoparticle synthesis, characterization, and functionalization. Put in very simple terms, optical lithography is a process where a beam of light, focused in a specific pattern, is used to generate a physical pattern on a solid substrate. This technology forms the basis for almost all microchip production in the world at the present time. As demand for faster and more powerful chips increases, the need to further miniaturize the patterns while minimizing cost has become very important. Multiple photochemical systems were developed in the search for non-reciprocal photochemistry at 193 nm to increase the resolution of lithographic processes at that wavelength. One approach, based on anthracene sensitization of sulfonium salts for acid generation, used photochemically reversible 4+4 aromatic cycloaddition reactions to introduce the non-linear photochemistry. A second approach took advantage of the photochemistry of N-methylphenothiazine and provided the first true example of a lithographically-relevant multi-photon acid generating process. Since all of the systems we studied used sulfonium salts as the acid generating species, we also looked at the photochemistry of the salts themselves. We evaluated the structural effects of the salts on their direct photochemistry and the implications for sensitized multi-photon photochemistry. We found that the identity of the anion plays a significant role in both processes and propose a new photochemical mechanism for acid generation that involves a charge transfer excitation process. We also describe the synthesis and characterization of novel fluorescent silver nanoparticles, both in solution and polymer films. We show that the fluorescent images can be patterned easily and preliminary results show that photolithography based on nanoparticle formation may be possible. This latter approach could provide a facile route to nanoparticle-embedded functional materials. This work with nanoparticles was inspired partly by earlier work, also presented herein, on semiconductor nanoparticles and their interactions with disulfide ligands.
324

Photochemical Synthesis of Mono and Bimetallic Nanoparticles and Their Use in Catalysis

Pardoe, Andrea 04 May 2011 (has links)
Nanomaterials have become a popular topic of research over the years because of their many important applications. It can be a challenge to stabilize the particles at a nanometer size, while having control over their surface features. Copper nanoparticles were synthesized photochemically using a photogenerated radical allowing spatial and temporal control over their formation. The synthesis was affected by the stabilizers used, which changed the size, dispersity, rate of formation, and oxidation rate. Copper nanoparticles suffer from their fast oxidation in air, so copper-silver bimetallic nanoparticles were synthesized in attempts to overcome the oxidation of copper nanoparticles. Bimetallic nanoparticles were synthesized, but preventing the oxidation of the copper nanoparticles proved difficult. One important application of nanoparticles that was explored here is in catalyzing organic reactions. Because of the fast oxidation of copper nanoparticles, silver nanoparticles were synthesized photochemically on different supports including TiO2 and hydrotalcite (HTC). Their catalytic efficiency was tested using alcohol oxidations. Different silver nanoparticle shapes (decahedra and plates) were compared with the spheres to see the different catalytic efficiencies.
325

Photochemical 
Strategies
 for 
the 
Synthesis
 of 
Advanced
 Materials

Billone, Paul 19 April 2011 (has links)
This thesis describes the study of a variety of nanoscale materials and the development of novel synthetic strategies for their production. While the focus and bulk of this study have been directed specifically at subwavelength lithography, a significant portion of this thesis research involves nanoparticle synthesis, characterization, and functionalization. Put in very simple terms, optical lithography is a process where a beam of light, focused in a specific pattern, is used to generate a physical pattern on a solid substrate. This technology forms the basis for almost all microchip production in the world at the present time. As demand for faster and more powerful chips increases, the need to further miniaturize the patterns while minimizing cost has become very important. Multiple photochemical systems were developed in the search for non-reciprocal photochemistry at 193 nm to increase the resolution of lithographic processes at that wavelength. One approach, based on anthracene sensitization of sulfonium salts for acid generation, used photochemically reversible 4+4 aromatic cycloaddition reactions to introduce the non-linear photochemistry. A second approach took advantage of the photochemistry of N-methylphenothiazine and provided the first true example of a lithographically-relevant multi-photon acid generating process. Since all of the systems we studied used sulfonium salts as the acid generating species, we also looked at the photochemistry of the salts themselves. We evaluated the structural effects of the salts on their direct photochemistry and the implications for sensitized multi-photon photochemistry. We found that the identity of the anion plays a significant role in both processes and propose a new photochemical mechanism for acid generation that involves a charge transfer excitation process. We also describe the synthesis and characterization of novel fluorescent silver nanoparticles, both in solution and polymer films. We show that the fluorescent images can be patterned easily and preliminary results show that photolithography based on nanoparticle formation may be possible. This latter approach could provide a facile route to nanoparticle-embedded functional materials. This work with nanoparticles was inspired partly by earlier work, also presented herein, on semiconductor nanoparticles and their interactions with disulfide ligands.
326

Photochemical Synthesis of Mono and Bimetallic Nanoparticles and Their Use in Catalysis

Pardoe, Andrea 04 May 2011 (has links)
Nanomaterials have become a popular topic of research over the years because of their many important applications. It can be a challenge to stabilize the particles at a nanometer size, while having control over their surface features. Copper nanoparticles were synthesized photochemically using a photogenerated radical allowing spatial and temporal control over their formation. The synthesis was affected by the stabilizers used, which changed the size, dispersity, rate of formation, and oxidation rate. Copper nanoparticles suffer from their fast oxidation in air, so copper-silver bimetallic nanoparticles were synthesized in attempts to overcome the oxidation of copper nanoparticles. Bimetallic nanoparticles were synthesized, but preventing the oxidation of the copper nanoparticles proved difficult. One important application of nanoparticles that was explored here is in catalyzing organic reactions. Because of the fast oxidation of copper nanoparticles, silver nanoparticles were synthesized photochemically on different supports including TiO2 and hydrotalcite (HTC). Their catalytic efficiency was tested using alcohol oxidations. Different silver nanoparticle shapes (decahedra and plates) were compared with the spheres to see the different catalytic efficiencies.
327

The characterization of coupled plasmonic systems

Willingham, Britain 16 September 2013 (has links)
In this thesis numerical methods are used to understand the individual and collective optical response of metal nanoparticles (MNPs). In particular, finite 1D assemblies of MNPs are characterized by analytical solutions to Maxwell's equations. Small particle solutions such as the well-established plasmon hybridization scheme as well as a novel circuit model explaining the intrinsic mechanisms of free electron dynamics help to characterize the optical response of single and coupled MNPs. Complex systems of closely spaced MNPs with small interparticle gaps are studied with the help of full scattering solutions to Maxwell's equations. It is shown that higher order plasmon modes facilitate strong near-fields between MNPs, and in linear chains foster specific optical attributes which are present in more complex systems, playing a key role in energy propagation along practical MNP waveguides.
328

Synthesis, characterization and properties of bioconjugated hydrogel nanoparticles

Debord, Justin 07 June 2004 (has links)
No description available.
329

Consolidation of copper and aluminum micro and nanoparticles via equal channel angular extrusion

Hutchins, Cathleen Ruth 15 May 2009 (has links)
Ultrafine grained (UFG), and nanocrystalline (nc) materials are of interest because of the high strength, compared with coarse grained counterparts. Several current methods to fabricate UFG and nc materials result in samples too small for practical use. In addition, the fabrication of nc materials, in particular, is difficult, and defects in the material causes significant reduction in strength and ductility of these materials. The present study uses Equal Channel Angular Extrusion (ECAE) to produce relatively large consolidates of UFG and nc materials. ECAE has been used to consolidate micro and nanocrystalline powders. The behavior of consolidated pure Cu and aluminum alloys in the nano and micron size were explored. The effects of different routes, extrusion temperature, and post-ECAE processing on microstructure and mechanical behavior were studied. Processing parameters were explored to determine the influence of each parameter on the consolidation performance. The goals of experimenting with different processing parameters were to increase the ductility of the material, while maintaining relatively strong specimens. Comparisons were made with a recently developed powder compaction constitutive model and corresponding simulations. ECAE of microcrystalline powders produced relatively ductile materials, with high strength. Swaging of these consolidated powders produced samples which were softer and less ductile in tension, than the non-swaged samples. ECAE produced effective consolidation of Cu nanoparticles with average sizes of 100 nm, with an ultimate tensile strength of 680 MPa, with a fracture strain as much as 10%, which is higher than previously reported 7% [Haouaoui, 2005].
330

Mercury Removal from Aqueous Systems Using Commercial and Laboratory Prepared Metal Oxide Nanoparticles

Desai, Ishan 2009 August 1900 (has links)
Five commercial metal oxide nanoparticles (CuO, SiO2, Fe2O3, TiO2 and Al2O3) have been individually screened for mercury removal in a batch reactor under bicarbonate buffered and non-buffered aqueous solutions (DI water). Copper oxide was then selected for surface modification to enhance mercury removal. The surfaces of both laboratory prepared and commercially available copper oxide nanoparticles were treated with 1-octanethiol to produce copper sulfide and/or copper alkanethiol nanoparticles. The resulting particles were characterized using X-Ray Fluorescence(XRF), X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The novel nanoparticles demonstrated very high mercury removal (> 99%) from both the buffered and non-buffered aqueous solutions.

Page generated in 0.0436 seconds