Spelling suggestions: "subject:"nanostructures.""
801 |
Fabrication and chemical modifications of photonic crystals produced by multiphoton lithographyChen, Vincent W. 11 November 2011 (has links)
This thesis is concerned with the fabrication methodology of polymeric photonic crystals operating in the visible to near infrared regions and the correlation between the chemical deposition morphologies and the resultant photonic stopband enhancements of photonic crystals.
Multiphoton lithography (MPL) is a powerful approach to the fabrication of polymeric 3D micro- and nano-structures with a typical minimum feature size ~ 200 nm. The completely free-form 3D fabrication capability of MPL is very well suited to the formation of tailored photonic crystals (PCs), including structures containing well defined defects. Such structures are of considerable current interest as micro-optical devices for their filtering, stop-band, dispersion, resonator, or waveguiding properties. More specifically, the stop-band characteristics of polymer PCs can be finely controlled via nanoscale changes in rod spacings and the chemical functionalities at the polymer surface can be readily utilized to impart new optical properties.
Nanoscale features as small as 65 ± 5 nm have been formed reproducibly by using 520 nm femtosecond pulsed excitation of a 4,4'-bis(di-n-butylamino)biphenyl chromophore to initiate crosslinking in a triacrylate blend. Dosimetry studies of the photoinduced polymerization were performed on chromophores with sizable two-photon absorption cross-sections at 520 and 730 nm. These studies show that sub-diffraction limited line widths are obtained in both cases with the lines written at 520 nm being smaller. Three-dimensional multiphoton lithography at 520 nm has been used to fabricate polymeric woodpile photonic crystal structures that show stop bands in the visible to near-infrared spectral region.
85 ± 4 nm features were formed using swollen gel photoresist by 730 nm excitation MPL. An index matching oil was used to induce chemical swelling of gel resists prior to MPL fabrication. When swollen matrices were subjected to multiphoton excitation, a similar excitation volume is achieved as in normal unswollen resins. However, upon deswelling of the photoresist following development a substantial reduction in feature size was obtained. PCs with high structural fidelity across 100 µm × 100 µm × 32 layers exhibited strong reflectivity (>60% compared to a gold mirror) in the near infrared region. The positions of the stop-bands were tuned by varying the swelling time, the exposure power (which modifies the feature sizes), and the layer spacing between rods.
Silver coatings have been applied to PCs with a range of coverage densities and thicknesses using electroless deposition. Sparse coatings resulted in enhanced reflectivity for the stop band located at ~5 µm, suggesting improved interface reflectivity inside the photonic crystal due to the Ag coating. Thick coatings resulted in plasmonic bandgap behavior with broadband reflectivity enhancement and PC lattice related bandedge at 1.75 µm. Conformal titania coatings were grown onto the PCs via a surface sol-gel method. Uniform and smooth titania coatings were achieved, resulting in systematically red-shifted stopbands from their initial positions with increasing thicknesses, corresponding to the increased effective refractive index of the PC. High quality titania shell structures with modest stopbands were obtained after polymer removal.
Gold replica structures were obtained by electroless deposition on the silica cell walls of naturally occurring diatoms and the subsequent silica removal. The micron-scaled periodic hole lattice originated from the diatom resulted in surface plasmon interferences when excited by infrared frequencies. The hole patterns were characterized and compared with hexagonal hole arrays fabricated by focused ion beam etching of similarly gold plated substrate. Modeling of the hole arrays concluded that while diatom replicas lack long-ranged periodicity, the local hole to hole spacings were sufficient to generate enhanced transmission of 13% at 4.2 µm.
The work presented herein is a step towards the development of PCs with new optical and chemical functionalities. The ability to rapidly prototype polymeric PCs of various lattice parameters using MPL combined with facile coating chemistries to create structures with the desired optical properties offers a powerful means to produce tailored high performance photonic crystal devices.
|
802 |
Carbon nanotubes as structural templates within poly(vinyl alcohol) composite fibersFord, Ericka N. J. 12 November 2012 (has links)
Because the gel-spinning process has the potential to yield fibers of high strength and high modulus, this technique was employed to process continuous filaments of PVA/CNT, having CNTs at ¡Ü1 weight percent of polymer. A gel aging technique was employed with the goal of increasing the draw ratio for composite fibers and for promoting the development of crystalline PVA. Since residual solvent can lower the mechanical properties of drawn fibers, solvent phases of water and dimethyl sulfoxide (DMSO) within the drawn fibers were also characterized. As embedded SWNTs were uniaxially aligned along the drawn fiber axis, they were found to induce preferential alignment in the PVA side groups as well as for the residual solvent. This was attributed to charge transfer between SWNT and the respective functional groups. This orientation behavior has been characterized using Raman spectroscopy and infra-red dichroism. The behaviors of gel crystallization and solvent freezing within PVA/CNT dispersions were studied using thermal analysis and rheology. Carbon nanotubes were found to nucleate PVA crystallization in the gel state. PVA/CNT gel aging behavior was characterized by structural, thermal, and mechanical, and dynamic mechanical means. Gel aging was shown to increase the draw ratio of PVA/CNT fibers, and the development of the higher temperature melting peak was attributed to the draw induced ordering of PVA along CNTs. The scanning electron micrographs of fractured PVA/CNT fibers showed fibrils having an average diameter of about 22 nm. The storage modulus of aged gel was a function of solvent diffusion, which changed with aging time. CNTs were shown to have stabilized the gel network, as characterized by the dynamic mechanical properties, and to provide nucleation sites for the ordering of PVA chains, as characterized by WAXD.
|
803 |
Synthesis and characterization of nanostructured, mixed-valent compounds for electrochemical energy storage devicesSong, Min Kyu 10 November 2011 (has links)
The performances of current electrical energy storage systems (both batteries and electrochemical capacitors) are not capable of meeting the ever-increasing demands of emerging technologies. This is because batteries often suffer from slow power delivery, limited life-time, and long charging time whereas electrochemical capacitors suffer from low energy density. While extensive efforts have been made to the development of novel electrode materials, progress has been hindered by the lack of a profound understanding on the complex charge storage mechanism. Therefore, the main objective of this research is to develop novel electrode materials which can exhibit both high energy and power density with prolonged life-time and to gain a fundamental understanding of their charge storage mechanism.
First, nanostructured, thin, and conformal coatings of transition metal oxides have been deposited onto three-dimensional porous substrates of current collectors to form composite electrodes. The structures and compositions of the oxide coatings are further altered by a controlled annealing process and characterized by electron microscopy and spectroscopy, laboratory X-ray diffraction, gas adsorption analysis, and in-situ and ex-situ synchrotron-enabled X-ray diffraction and absorption spectroscopy. The structural features have also been correlated with the electrochemical behavior of the transition metal oxides as an electrode in an electrochemical capacitor. It is found that the electrochemical performance of the composite electrodes depends sensitively on the composition, nanostructure, and morphology of the oxide coatings. When optimized, the electrodes displayed the highest energy and power density with excellent cycling life among all materials reported for electrochemical capacitors. Finally, new charge storage mechanisms have also been proposed for the novel electrode materials based on insights gained from in-situ synchrotron-based X-ray absorption spectroscopy.
|
804 |
Tensegrity-inspired nanocomposite structuresLee, Ji Hoon 28 June 2012 (has links)
The main goal of this research is to construct hierarchical microstructures from polymer nanocomposites. Specifically, the research focused on constructing tensegrity-inspired microstructure where the nanoparticles are the compression members and the polymer matrix is tensile web. In order to achieve the tensegrity-inpired microstruture, the research was conducted with the following objectives.
1. Synthesis of Hydroxyapatite (HAp) nanoparticles of controlled shapes using block copolymer templates.
2. Investigation of the effects of particle loadings and shapes on isotropic nanocomposite properties.
3. Construction of HAp building blocks into the tensegrity-inspired microstructures
First, in order to use the nanoparticles for this structure, needle-shaped HAp nanoparticles were synthesized using block copolymer templates. The results indicated that significant amount of polymer remained on particle surface. Since these particles were coated with polymer blocks, the decorated polymer blocks were considered as the interphase material which would be used to prestress the HAp nanoparticles, and the particles would be acted as the building blocks for constructing tensegrity-inspired microstructure. For nanocomposites, polymer coating on HAp nanoparticles promoted particle dispersion. The effect of particle shapes on thermomechanical properties did not show significant differences between the two particle systems due to their low aspect ratios and chemical similarity. However, the polymer crystallinity and crystallization showed different trend as a function of particle loadings in two particle systems, and the behavior was unified through a common particle spacing of approximately 120 nm. In order to investigate the effect of particle arrangement in the polymer matrix, needle-shaped HAp nanoparticles synthesized with two different block copolymers were mixed with different morphology of polymer matrices and manipulated particle arrangement using the drawing process. Nanocomposites prepared with different matrix morphologies showed the similar dispersion characteristics and reinforcement behavior. The experimental results showed the drawing process influenced the particle arrangement in the polymer matrix, and the particle arrangement and reinforcement behavior were influenced by polymer matrix morphology. The thermomechanical properties of both matrix systems enhanced through the drawing process in the glassy region, but the effect of degree of particle orientation was difficult to distinguish due to low aspect ratios of HAp particles which was not enough to impact on overall microstructure.
|
805 |
Wafer-scale processing of arrays of nanopore devicesAhmadi, Amir 10 January 2013 (has links)
Nanopore-based single-molecule analysis of biomolecules such as DNA and proteins is a subject of strong scientific and technological interest. In recent years, solid state nanopores have been demonstrated to possess a number of advantages over biological (e.g., ion channel protein) pores due to the relative ease of tuning the pore dimensions, pore geometry, and surface chemistry. However, solid state fabrication methods have been limited in their scalability, automation, and reproducibility.
In this work, a wafer-scale fabrication method is first demonstrated for reproducibly fabricating large arrays of solid-state nanopores. The method couples the high-resolution processes of electron beam lithography (EBL) and atomic layer deposition (ALD). Arrays of nanopores (825 per wafer) are successfully fabricated across a series of 4' wafers, with tunable pore sizes from 50 nm to sub-20 nm. The nanopores are fabricated in silicon nitride films with thicknesses varying from 10 nm to 50 nm. ALD of aluminum oxide is used to tune the nanopore size in the above range. By careful optimization of all the processing steps, a device survival rate of 96% is achieved on a wafer with 50 nm silicon nitride films on 60- 80 micron windows. Furthermore, a significant device survival rate of 88% was obtained for 20 nm silicon nitride films on order 100 micron windows. In order to develop a deeper understanding of nanopore fabrication-structure relationships, a modeling study was conducted to examine the physics of EBL, in particular: to investigate the effects of beam blur, dose, shot pattern, and secondary electrons on internal pore structure. Under the operating conditions used in pore production, the pores were expected to taper to a substantially smaller size than their apparent size in SEM. This finding was supported by preliminary conductance readings from nanopores.
|
806 |
Mulitscale modeling and screening of nanoporous materials and membranes for separationsHaldoupis, Emmanuel 08 April 2013 (has links)
The very large number of distinct structures that are known for metal-organic frameworks (MOFs) and zeolites presents both an opportunity and a challenge for identifying materials with useful properties for targeted separations. In this thesis we propose a three-stage computational methodology for addressing this issue and comprehensively screening all available nanoporous materials. We introduce efficient pore size calculations as a way of discarding large number of materials, which are unsuitable for a specific separation. Materials identified as having desired geometric characteristics can be further analyzed for their infinite dilution adsorption and diffusion properties by calculating the Henry's constants and activation energy barriers for diffusion. This enables us to calculate membrane selectivity in an unprecedented scale and use these values to generate a small set of materials for which the membrane selectivity can be calculated in detail and at finite loading using well-established computational tools. We display the results of using these methods for >500 MOFs and >160 silica zeolites for spherical adsorbates at first and for small linear molecules such as CO₂ later on. In addition we also demonstrate the size of the group of materials this procedure can be applied to, by performing these calculations, for simple adsorbate molecules, for an existing library of >250,000 hypothetical silica zeolites. Finally, efficient methods are introduced for assessing the role of framework flexibility on molecular diffusion in MOFs that do not require defining a classical forcefield for the MOF. These methods combine ab initio MD of the MOF with classical transition state theory and molecular dynamics simulations of the diffusing molecules. The effects of flexibility are shown to be large for CH₄, but not for CO₂ and other small spherical adsorbates, in ZIF-8.
|
807 |
Theoretical and experimental investigation of condensation on amphiphilic nanostructured surfacesAnderson, David Milton 18 March 2013 (has links)
Condensation of water vapor is an everyday phenomenon which plays an important role in power generation schemes, desalination applications and high-heat flux cooling of power electronic devices. Continuous dropwise condensation is a desirable mode of condensation in which small, highly-spherical droplets regularly form and shed off the surface before a thick liquid is formed, thereby minimizing the thermal resistance to heat transfer across the condensate layer. While difficult to induce and sustain, dropwise condensation has been shown to achieve heat and mass transfer coefficients over an order of magnitude higher than its filmwise counterpart. Superhydrophobic surfaces have been extensively studied to promote dropwise condensation with mixed results; often surfaces that are superhydrophobic to deposited droplets formed in the gas phase above the surface do not retain this behavior with condensed droplets nucleated and grown on the surface. Recently, nanostructured superhydrophobic surfaces have been developed that are robust to vapor condensation; however, these surfaces still are not ideal for condensation heat transfer due to the high thermal resistance of the vapor layer trapped underneath the droplets and the reduced footprint of direct contact between the highly-spherical droplets and the underlying substrate.
This work has two main objectives. First, a comprehensive free energy based thermodynamic model is developed to better understand why traditional superhydrophobic surfaces often lose their properties when exposed to condensed droplets. The model is first validated using data from the existing literature and then extended to analyze the suitability of amphiphilic (e.g. part hydrophobic and part hydrophilic) nanostructured surfaces for condensation applications. Secondly, one of the promising amphiphilic surfaces identified by the thermodynamic model is fabricated and tested to observe condensation dynamic behavior. Two complementary visualization techniques, environmental scanning electron microscopy (ESEM) and optical (light) microscopy, are used to probe the condensation behavior and compare the performance to that of a traditional superhydrophobic surface. Observations from the condensation experiments are used to propose a new mechanism of coalescence that governs the temporal droplet size distribution on the amphiphilic nanostructured surface and continually generates fresh sites for the droplet nucleation and growth cycle that is most efficient at heat transfer.
|
808 |
Controlled mechano-chemical synthesis and properties of nanostructured hydrides in the Mg-Al-H and Mg-B-H systemsChiu, Chun 28 March 2007 (has links)
The present work reports a study of mechano-chemical synthesis (MCS) and mechano-chemical activation synthesis (MCAS) of nanostructured hydrides in the Mg-H, Mg-Al-H and Mg-B-H systems by controlled reactive mechanical alloying/milling (CRMA/CRMM) in the magneto-mill Uni-Ball-Mill 5.
Regardless of the hydride systems, the morphologies of milled Mg-H, Mg-Al-H and Mg-B-H powders after a prolonged milling time can be characterized by dramatic particle size refinement and high tendency to form agglomerates.
In the Mg-Al-H system, no successful synthesis of magnesium alanate has been achieved by MCS of the nanostructured magnesium alanate using four starting stoichiometric Mg-2Al mixtures. It is hypothesized that Al(Mg) solid solution in the initial stage (~10h) of CRMA and free Al(s) decomposed from solid solution as the milling time increases the initial stage inhibit the reaction to form magnesium alanate.
In contrast to an unsuccessful synthesis in MCS process, a successful synthesis of the magnesium alanate and 2NaCl mixture by MCAS has been achieved. DSC and TGA analysis show that the decomposition of magnesium alanate occurs in a two-step reaction at the temperature ranges of 125-180 and 225-340°C.
In the Mg-B-H system, when the Mg-2B mixture is made with the oxidized amorphous boron containing B2O3 then after a prolonged MCS time (200h), only nanometric γ- and β- magnesium hydrides are formed. In contrast, oxide-free amorphous boron in the original Mg-2B mixture prompts the formation of a resulting mixture of nanometric MgB2 and an amorphous phase containing hydrogen. Further annealing of the milled Mg-2B mixtures at ~100-400ºC under ~4-4.3 MPa of hydrogen for 20-100h does not result in the formation of ternary magnesium alanate.
Alternatively, a powder mixture of 2NaBH4 and MgCl2 is used as a starting material to synthesize Mg(BH4)2 hydride. Amorphous Mg(BH4)2 phase might have been synthesized after MCAS process. However, the formation of Na(Mg)BH4 solid solution might prevent the synthesis of a large amount of Mg(BH4)2 hydride. Once the solid solution is formed, the amount of Mg will be insufficient to form a large amount of Mg(BH4)2 hydride.
|
809 |
Controlled mechano-chemical synthesis and properties of nanostructured hydrides in the Mg-Al-H and Mg-B-H systemsChiu, Chun 28 March 2007 (has links)
The present work reports a study of mechano-chemical synthesis (MCS) and mechano-chemical activation synthesis (MCAS) of nanostructured hydrides in the Mg-H, Mg-Al-H and Mg-B-H systems by controlled reactive mechanical alloying/milling (CRMA/CRMM) in the magneto-mill Uni-Ball-Mill 5.
Regardless of the hydride systems, the morphologies of milled Mg-H, Mg-Al-H and Mg-B-H powders after a prolonged milling time can be characterized by dramatic particle size refinement and high tendency to form agglomerates.
In the Mg-Al-H system, no successful synthesis of magnesium alanate has been achieved by MCS of the nanostructured magnesium alanate using four starting stoichiometric Mg-2Al mixtures. It is hypothesized that Al(Mg) solid solution in the initial stage (~10h) of CRMA and free Al(s) decomposed from solid solution as the milling time increases the initial stage inhibit the reaction to form magnesium alanate.
In contrast to an unsuccessful synthesis in MCS process, a successful synthesis of the magnesium alanate and 2NaCl mixture by MCAS has been achieved. DSC and TGA analysis show that the decomposition of magnesium alanate occurs in a two-step reaction at the temperature ranges of 125-180 and 225-340°C.
In the Mg-B-H system, when the Mg-2B mixture is made with the oxidized amorphous boron containing B2O3 then after a prolonged MCS time (200h), only nanometric γ- and β- magnesium hydrides are formed. In contrast, oxide-free amorphous boron in the original Mg-2B mixture prompts the formation of a resulting mixture of nanometric MgB2 and an amorphous phase containing hydrogen. Further annealing of the milled Mg-2B mixtures at ~100-400ºC under ~4-4.3 MPa of hydrogen for 20-100h does not result in the formation of ternary magnesium alanate.
Alternatively, a powder mixture of 2NaBH4 and MgCl2 is used as a starting material to synthesize Mg(BH4)2 hydride. Amorphous Mg(BH4)2 phase might have been synthesized after MCAS process. However, the formation of Na(Mg)BH4 solid solution might prevent the synthesis of a large amount of Mg(BH4)2 hydride. Once the solid solution is formed, the amount of Mg will be insufficient to form a large amount of Mg(BH4)2 hydride.
|
810 |
Nanocarving of Titania Surfaces Using Hydrogen Bearing GasesRick, Helene Sylvia 18 May 2005 (has links)
An investigation of surface structures formed on polycrystalline and single crystal TiO2 (titania) samples having under gone various heat treatments in a controlled hydrogen bearing atmosphere was conducted. The study included the recreation and examination of the process discovered by Sehoon Yoo at Ohio State University to form nanofibers on the surface of polycrystalline TiO2 disks. Fibers were formed by heating samples to 700??in a 5%H2 95%N2 gas stream. The nanofibers formed during this processes are approximately 5-20 nanometers in diameter and can be 100??f nanometers long. The fibers do not actually grow on the surface, but are what remain of the surface as the material around them is removed by the gas stream V i.e., nanocarving. The mechanism of fiber formation and the effect of varying experimental parameters remained unknown and were explored within this study. This included changing gas composition, flow rate, and changes in sample preparation. The effect of isovalent doping and impurities within the starting powder were examined. Sintering temperature and time was investigated to determine the effect of grain size and surface morphologies prior to nanocarving. The effect of elevated temperature and 5%H2 95%N gas on the surface of TiO2 single-crystal wafers was also investigated. Test methods include Thermogravimetric Analysis (TGA), Mass Spectrometry (MS), Scanning Electron Microscopy (SEM), and X-ray diffraction (XRD) analysis.
|
Page generated in 0.0544 seconds