• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 82
  • 82
  • 50
  • 50
  • 48
  • 48
  • 41
  • 33
  • 29
  • 21
  • 21
  • 19
  • 18
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

GROWTH AND MODELLING OF InGaP NANOWIRES BY MBE

Fakhr, Ahmed 10 1900 (has links)
<p>The growth of ternary InGaP nanowires (NWs) is explored. Free-standing NWs are grown with the Au nanoparticle-assisted method using a gas source molecular beam epitaxy (GS-MBE) system. The grown samples were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive x-ray spectroscopy (EDX). These characterization techniques were employed to examine the composition of the InGaP NWs, the morphology and the crystal structure. With varying the growth conditions, such as temperature, growth rate and V/III flux, a dependence of the NWs' composition, morphology and crystal structure were observed. In addition, the characteristics of the NWs showed great dependence on the diameter of the Au seed particle responsible for the NW growth.</p> <p>A physical-based growth model is developed to understand the NW growth results. The model deals with each of the group-III growth species differently and splits the group-V into two components, with each component associated with one of the group-III species. The model is able to match composition and morphology results obtained from the experimental data.</p> <p>Furthermore, a nucleation-based model is employed and integrated with the growth model to predict the crystal structure of the NWs. Based on this model, the operating regions for all out samples were illustrated. In addition, the dependence of the crystal structure of the NWs on the Au seed diameter, in our samples, was attributed to the change in the surface energies of the formed nucleus as the Au seed diameter change.</p> / Doctor of Engineering (DEng)
2

DEVELOPMENT OF INFRARED AND TERAHERTZ BOLOMETERS BASED ON PALLADIUM AND CARBON NANOTUBES USING ROLL TO ROLL PROCESS

Gullapalli, Amulya 18 March 2015 (has links) (PDF)
Terahertz region in the electromagnetic spectrum is the region between Infrared and Microwave. As the Terahertz region has both wave and particle nature, it is difficult to make a room temperature, fast, and sensitive detector in this region. In this work, we fabricated a Palladium based IR detector and a CNT based THz bolometer. In Chapter 1, I give a brief introduction of the Terahertz region, the detectors already available in the market and different techniques I can use to test my detector. In Chapter 2, I explain about the Palladium IR bolometer, the fabrication technique I have used, and then we discuss the performance of the detector. In Chapter 3, I explained about the Roll to Roll based THz bolometer, its working and fabrication techniques, and at the end we discussed its performance.
3

Environmentally Friendly Synthesis of Transition Metalorganic Hybrid Nanocomposites

Penn, Aubrey N 01 April 2017 (has links)
Research on metal nanoparticles (MNPs) synthesis and their applications for optoelectronic devices has been a recent interest in the fields of nanoscience and nanotechnology Photovoltaics are one of such systems in which MNPs have shown to be quite useful, due to unique physical, optical, magnetic, and electronic properties, including the metal nanoparticles synthesized in this research. Owing to the challenges with the most common physical and chemical methods of preparing MNPs, including the use of high temperatures, toxic reducing agents, and environmentally hazardous organic solvents, there is a critical need for a benign synthesis procedure for MNPs. In this work, a simple, versatile, and environmentally and economically responsible synthesis method for making iron, nickel, zinc, and bimetallic alloy nanoparticles (ANPs) has been developed and functionalization with organic capping agents were performed to form metal-organic hybrid nanocomposites with tunable properties. The size, shape, elemental composition, photophysical properties, and crystallinity of particles and their hybrids have been evaluated. Monometallic nanostructures of iron, nickel, and zinc oxide were synthesized via aqueous-phase reduction of metal(II) chloride salts with sodium borohydride. Upon optimization of the standard method described here, reaction parameters like reaction time, reagent molar ratios, and capping-agent molar ratio were evaluated. Characterization techniques such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive x-ray (EDS), IR, and UV-visible spectroscopies, selected area electron diffraction (SAED), and power x-ray diffraction (XRD) were performed as necessary. Well-defined, reproducible nickel and iron nanoparticles were produced with average diameters of 26±4 nm and 50±26 nm, respectively, arranged into chain-like structures. Much smaller (6-9 nm) zinc oxide particles that self-assembled into single-particle thick, hexagonal hierarchical microstructures were formed from a modified standard method. Similarly, iron-nickel ANPs with the average size of 20.9±3.3 nm were also synthesized and successful grafting with the polymer capping agent, polyvinylpyrrolidone was confirmed. Because of size, ordered self-assembly, and benign synthesis procedure, the nanoparticles described here are ideal candidates for photovoltaic and thermoelectric device applications. Moreover, these particles have shown to disperse well in various organic and inorganic media, and therefore have wide versatility in thin-film deposition methods.
4

Low-temperature Fabrication Process for Integrated High-Aspect Ratio Metal Oxide Nanostructure Semiconductor Gas Sensors

Clavijo, William Paul 01 January 2017 (has links)
This work presents a new low-temperature fabrication process of metal oxide nanostructures that allows high-aspect ratio zinc oxide (ZnO) and titanium dioxide (TiO2) nanowires and nanotubes to be readily integrated with microelectronic devices for sensor applications. This process relies on a new method of forming a close-packed array of self-assembled high-aspect-ratio nanopores in an anodized aluminum oxide (AAO) template in a thin (2.5 µm) aluminum film deposited on a silicon and lithium niobate substrate (LiNbO3). This technique is in sharp contrast to traditional free-standing thick film methods and the use of an integrated thin aluminum film greatly enhances the utility of such methods. We have demonstrated the method by integrating ZnO nanowires, TiO2 nanowires, and multiwall TiO2 nanotubes onto the metal gate of a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), and the delay line of a surface acoustic wave (SAW) device to form an integrated ChemFET (Chemical Field-Effect Transistor) and a orthogonal frequency coded (OFC) SAW gas sensor. The resulting metal oxide nanostructures of 1-1.7 µm in height and 40-100 nm in diameter offer an increase of up to 220X the surface area over a standard flat metal oxide film for sensing applications. The metal oxide nanostructures were characterized by SEM, EDX, TEM and Hall measurements to verify stoichiometry, crystal structure and electrical properties. Additionally, the electrical response of ChemFETs and OFC SAW gas sensors with ZnO nanowires, TiO2 nanowires, and multiwall TiO2 nanotubes were measured using 5-200 ppm ammonia as a target gas at room temperature (24ºC) showing high sensitivity and reproducible testing results.
5

Optical investigations of InGaN heterostructures and GeSn nanocrystals for photonic and phononic applications: light emitting diodes and phonon cavities

Hafiz, Shopan d 01 January 2016 (has links)
InGaN heterostructures are at the core of blue light emitting diodes (LEDs) which are the basic building blocks for energy efficient and environment friendly modern white light generating sources. Through quantum confinement and electronic band structure tuning on the opposite end of the spectrum, Ge1−xSnx alloys have recently attracted significant interest due to its potential role as a silicon compatible infra-red (IR) optical material for photodetectors and LEDs owing to transition to direct bandgap with increasing Sn. This thesis is dedicated to establishing an understanding of the optical processes and carrier dynamics in InGaN heterostructures for achieving more efficient visible light emitters and terahertz generating nanocavities and in colloidal Ge1−xSnx quantum dots (QDs) for developing efficient silicon compatible optoelectronics. To alleviate the electron overflow, which through strong experimental evidence is revealed to be the dominating mechanism responsible for efficiency degradation at high injection in InGaN based blue LEDs, different strategies involving electron injectors and optimized active regions have been developed. Effectiveness of optimum electron injector (EI) layers in reducing electron overflow and increasing quantum efficiency of InGaN based LEDs was demonstrated by photoluminescence (PL) and electroluminescence spectroscopy along with numerical simulations. Increasing the two-layer EI thickness in double heterostructure LEDs substantially reduced the electron overflow and increased external quantum efficiency (EQE) by three fold. By incorporating δ p-doped InGaN barriers in multiple quantum well (MQW) LEDs, 20% enhancement in EQE was achieved due to improved hole injection without degrading the layer quality. Carrier diffusion length, an important physical parameter that directly affects the performance of optoelectronic devices, was measured in epitaxial GaN using PL spectroscopy. The obtained diffusion lengths at room temperature in p- and n-type GaN were 93±7 nm and 432±30 nm, respectively. Moreover, near field scanning optical microscopy was employed to investigate the spatial variations of extended defects and their effects on the optical quality of semipolar and InGaN heterostructures, which are promoted for higher efficiency light emitters owing to reduced internal polarization fields. The near-field PL from the c+ wings in heterostructures was found to be relatively strong and uniform across the sample but the emission from the c- wings was substantially weaker due to the presence of high density of threading dislocations and basal plane stacking faults. In case of heterostructures, striated regions had weaker PL intensities compared to other regions and the meeting fronts of different facets were characterized by higher Indium content due to the varying internal field. Apart from being the part and parcel of blue LEDs, InGaN heterostructures can be utilized in generation of coherent lattice vibrations at terahertz frequencies. In analogy to LASERs based on photon cavities where light intensity is amplified, acoustic nanocavity devices can be realized for sustaining terahertz phonon oscillations which could potentially be used in acoustic imaging at the nanoscale and ultrafast acousto-optic modulation. Using In0.03Ga0.97N/InxGa1-xN MQWs with varying x, coherent phonon oscillations at frequencies of 0.69-0.80 THz were generated, where changing the MQW period (11.5 nm -10 nm) provided frequency tuning. The magnitude of phonon oscillations was found to increase with indium content in quantum wells, as demonstrated by time resolved differential transmission spectroscopy. Design of an acoustic nanocavity structure was proposed based on the abovementioned experimental findings and also supported by full cavity simulations. Optical gap engineering and carrier dynamics in colloidal Ge1−xSnx QDs were investigated in order to explore their potential in optoelectronics. By changing the Sn content from 5% to 23% in 2 nm-QDs, band-gap tunability from 1.88 eV to 1.61 eV, respectively, was demonstrated at 15 K, consistent with theoretical calculations. At 15 K, time resolved PL spectroscopy revealed slow decay (3 − 27 μs) of luminescence, due to recombination of spin-forbidden dark excitons and effect of surface states. Increase in temperature to 295 K led to three orders of magnitude faster decay (9 − 28 ns) owing to the effects of thermal activation of bright excitons and carrier detrapping from surface states. These findings on the effect of Sn incorporation on optical properties and carrier relaxation and recombination processes are important for future design of efficient Ge1−xSnx QDs based optoelectronic devices. This thesis work represents a comprehensive optical study of InGaN heterostructures and colloidal Ge1−xSnx QDs which would pave the way for more efficient InGaN based LEDs, realization of terahertz generating nanocavities, and efficient Ge1−xSnx based silicon compatible optoelectronic devices.
6

Electric Field Controlled Strain Induced Switching of Magnetization of Galfenol Nanomagnets in Magneto-electrically Coupled Multiferroic Stack

Ahmad, Hasnain 01 January 2016 (has links)
The ability to control the bi-stable magnetization states of shape anisotropic single domain nanomagnets has enormous potential for spawning non-volatile and energy-efficient computing and signal processing systems. One of the most energy efficient switching methods is to adopt a system of a 2-phase multiferroic nanomagnet, where a voltage applied on the piezoelectric layer generates a strain in it and the strain is elastically transferred to the magnetostrictive nanomagnet which rotates the magnetization states of the nanomagnet at room temperature via the converse magnet-electric effect. Recently, it has been demonstrated that the magnetization of a Co nanomagnet can be switched between two stable orientations by this technique. The switching probability, however, is low due to the relatively small magnetostriction of Co. One possible way to improve the statistics is to use a better magnetostrictive material like Galfenol which has much higher magnetostriction and is therefore desirable, but it also presents unique material challenges owing to the existence of many phases. Nonetheless, there is a need to step beyond elemental ferromagnets and examine compound or alloyed ferromagnets with much higher magnetostriction to advance this field. There has not been much work in nanoscale FeGa magnets which are important for nanomagnetic logic and memory applications. Here, we have experimentally demonstrated switching of magnetization of Galfenol nanomagnets and proposed a core component of ultra-energy-efficient memory cell. We also demonstrated a bit writing scheme which completely reverses the magnetization with only strain, thus overcoming the fundamental obstacle of strain induced switching of magnetizations of nanomagnets.
7

Plasmonic Nanoplatforms for Biochemical Sensing and Medical Applications

Ahmadivand, Arash 24 January 2018 (has links)
Plasmonics, the science of the excitation of surface plasmon polaritons (SPP) at the metal-dielectric interface under intense beam radiation, has been studied for its immense potential for developing numerous nanophotonic devices, optical circuits and lab-on-a-chip devices. The key feature, which makes the plasmonic structures promising is the ability to support strong resonances with different behaviors and tunable localized hotspots, excitable in a wide spectral range. Therefore, the fundamental understanding of light-matter interactions at subwavelength nanostructures and use of this understanding to tailor plasmonic nanostructures with the ability to sustain high-quality tunable resonant modes are essential toward the realization of highly functional devices with a wide range of applications from sensing to switching. We investigated the excitation of various plasmonic resonance modes (i.e. Fano resonances, and toroidal moments) using both optical and terahertz (THz) plasmonic metamolecules. By designing and fabricating various nanostructures, we successfully predicted, demonstrated and analyzed the excitation of plasmonic resonances, numerically and experimentally. A simple comparison between the sensitivity and lineshape quality of various optically driven resonances reveals that nonradiative toroidal moments are exotic plasmonic modes with strong sensitivity to environmental perturbations. Employing toroidal plasmonic metasurfaces, we demonstrated ultrafast plasmonic switches and highly sensitive sensors. Focusing on the biomedical applications of toroidal moments, we developed plasmonic metamaterials for fast and cost-effective infection diagnosis using the THz range of the spectrum. We used the exotic behavior of toroidal moments for the identification of Zika-virus (ZIKV) envelope proteins as the infectious nano-agents through two protocols: 1) direct biding of targeted biomarkers to the plasmonic metasurfaces, and 2) attaching gold nanoparticles to the plasmonic metasurfaces and binding the proteins to the particles to enhance the sensitivity. This led to developing ultrasensitive THz plasmonic metasensors for detection of nanoscale and low-molecular-weight biomarkers at the picomolar range of concentration. In summary, by using high-quality and pronounced toroidal moments as sensitive resonances, we have successfully designed, fabricated and characterized novel plasmonic toroidal metamaterials for the detection of infectious biomarkers using different methods. The proposed approach allowed us to compare and analyze the binding properties, sensitivity, repeatability, and limit of detection of the metasensing devices
8

Anomalous Properties of Sub-10-nm Magnetic Tunneling Junctions

Stone, Mark 01 January 2018 (has links)
Magnetic Logic Devices have the advantage of non-volatility, radiation hardness, scalability down to the sub-10nm range, and three-dimensional (3D) integration capability. Despite these advantages, magnetic applications for information processing remain limited. The main stumbling block is the high energy required to switch information states in spin-based devices. Recently, the spin transfer torque (STT) effect has been introduced as a promising solution. STT based magnetic tunneling junctions (MTJs), use a spin polarized electric current to switch magnetic states. They are theorized to bring the switching energy down substantially. However, the switching current density remains in the order of 1 MA/cm2 in current STT-MTJ devices, with the smallest device reported to date around 10nm. This current density remains inadequately high for enabling a wide range of information processing applications. For this technology to be competitive in the near future it is critical to show that it could be favorably scaled into the sub-10-nm range. This is an intriguing size range that currently remains unexplored. Nanomagnetic devices may display promising characteristics that can make them superior to their semiconductor counterparts. Below 10nm the spin physics from the vii surface become dominate versus those due to volume. The goal is to understand the size dependence versus the switching current.
9

Fabrication and Characterization of Polycarbonate Polyurethane (PCPU) Nanofibers Impregnated with Nanofillers

Katakam, Hruday chand 12 March 2015 (has links)
Polycarbonate polyurethane (PCPU) has been studied as a novel polymer impregnated with nanoparticles for improved mechanical, thermal and adhesion properties [4]. This study investigates the synthesis of polycarbonate polyurethane (PCPU) polymeric nanofiber membranes by the process of electrospinning. This study further examines all the parameters associated with electrospinning a novel PCPU polymeric solution impregnated with nanofillers, such as nanoparticles, to produce fiber membranes. Tetrahydrofuran (THF) and N, N dimethylformamide (DMF) are used as solvents to dissolve PCPU polymer. One percent (1%) of nanofillers like silver and silica nanoparticles are added to PCPU polymer solution to investigate the impact on polymer solution properties, which in turn affects the fiber formation. Process parameters are studied by evaluating the impact each parameter has on the fiber formation. PCPU polymer concentrations of three polymer solutions (PCPU, PCPU + 1% silver and PCPU + 1% silica) with the appropriate solvent mixture ratio are achieved to produce polymeric fiber membranes with minimal bead formation. Polymeric nanofiber membranes of PCPU, PCPU + 1% silver and PCPU + 1% silica are produced using THF/DMF: 70/30 (V/V) solvent mixture. The polymeric nanofiber membranes obtained are characterized by using a scanning electron microscopy, rotational viscometer, tensiometer, contact angle measurement device, fourier transform infrared spectroscopy (FTIR). A comparative life cycle assessment (LCA) is performed to evaluate environmental impacts associated with solvents in the process of producing PCPU polymeric nanofiber membranes. The LCA is completed to gauge the potential impacts PCPU nanofiber membranes may have when utilized for various applications. This study discusses the successful production and characterization of good quality (no beading) polymeric nanofiber membranes of PCPU and novel composites of PCPU + 1% silver and PCPU + 1% silica. This two dimensional production of impregnated PCPU in nanofiber form will give researchers the opportunity to capitalize on the large surface areas of PCPU nanofibers versus PCPU thin films.
10

Fabrication and Characterization of Magnetic Nanostructures

Scott, Kevin 30 October 2014 (has links)
Magnetic permalloy nanostructures were fabricated onto a silicon wafer using electron beam lithography and a liftoff process. The lithography was performed with a Hitachi SU-70 SEM retrofitted with a Nabity NPGS lithography conversion kit. PMMA of 950kDa molecular weight was used as the photoresist. Features were either nanowires, nanodots, or elliptical or rectangular nanostructures. The nanowires had dimensions of 15µm x 200nm x 40nm, the nanodots had diameters of 145nm and thickness of 12nm, and the ellipses and rectangles had dimensions of 110nm x 50nm x 13nm. Characterization of the nanostructures was performed using the same Hitachi SEM as well as a Digital Instruments DI 3100 Nanoscope IIIa AFM used in magnetic force imaging mode. The SEM was used to measure lateral dimensions of the features and to capture images of features for proper documentation and for external simulation studies. The MFM was used to capture magnetic images of the samples to determine the magnetic state of the nanowires or arrays.

Page generated in 0.1223 seconds