• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 10
  • 10
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Adaptive Curvature for Stochastic Optimization

January 2019 (has links)
abstract: This thesis presents a family of adaptive curvature methods for gradient-based stochastic optimization. In particular, a general algorithmic framework is introduced along with a practical implementation that yields an efficient, adaptive curvature gradient descent algorithm. To this end, a theoretical and practical link between curvature matrix estimation and shrinkage methods for covariance matrices is established. The use of shrinkage improves estimation accuracy of the curvature matrix when data samples are scarce. This thesis also introduce several insights that result in data- and computation-efficient update equations. Empirical results suggest that the proposed method compares favorably with existing second-order techniques based on the Fisher or Gauss-Newton and with adaptive stochastic gradient descent methods on both supervised and reinforcement learning tasks. / Dissertation/Thesis / Masters Thesis Computer Science 2019
2

Neural Networks and the Natural Gradient

Bastian, Michael R. 01 May 2010 (has links)
Neural network training algorithms have always suffered from the problem of local minima. The advent of natural gradient algorithms promised to overcome this shortcoming by finding better local minima. However, they require additional training parameters and computational overhead. By using a new formulation for the natural gradient, an algorithm is described that uses less memory and processing time than previous algorithms with comparable performance.
3

The Effect of Snow on Plants and Their Interactions with Herbivores.

Torp, Mikaela January 2010 (has links)
The ongoing climate changes are predicted to accelerate fast in arctic regions with increases in both temperatures and precipitation. Although the duration of snow cover is generally expected to decrease in the future, snow depth may paradoxically increase in those areas where a large amount of the elevated precipitation will fall as snow. The annual distribution and duration of snow are important features in arctic ecosystems, influencing plant traits and species interactions in various ways. In this thesis, I investigated the effect of snow on plants and their interactions with herbivores by experimentally increasing the snow cover by snow fences in three different habitats along an environmental gradient in Abisko, northern Sweden. I found that the snow cover mattered for plant quality as food for herbivores and herbivore performance. An enhanced and prolonged snow cover increased the level of insect herbivory on dwarf birch leaves under field conditions. Autumnal moth larvae feeding on leaves that had experienced increased snow-lie grew faster and pupated earlier than larvae fed with leaves from control plots. These findings indicated that plants from snow-rich plots produced higher-quality food for herbivores. My studies showed that differences in snow-lie explained parts of the within-year spatial and seasonal variation in plant chemistry and patterns of herbivory in this arctic landscape. The relationship between leaf nitrogen concentration and plant phenology was consistent between treatments and habitats, indicating that snow per se, via a delayed phenology, was controlling the nitrogen concentration. The relationship between leaf age and level of herbivory was positive in the beginning of the growing season, but negative in the end of the growing season, indicating an increasing importance of plant palatability and a decreasing importance of exposure time in determining the level of herbivory throughout the growing season. The concentrations of phenolics varied among habitats, treatments and sampling occasions, suggesting that these plants were able to retain a mosaic of secondary chemical quality despite altered snow conditions. Furthermore, the nutrient limiting plant growth, according to N:P ratio thresholds, appeared to shift from nitrogen to phosphorus along the topographic gradient from snow-poor ridges to more snow-rich heathlands and fens. Snow addition had, however, no significant effect on other nutrient concentrations than nitrogen and no significant effect on the leaf N:P ratio, indicating that differences in snow cover could not explain the variation in plant nutrient concentrations among habitats. In a five-year study, I found opposing inter-annual effects of increased snow on plant chemistry. In contrast to earlier results, the effect of snow-lie on plant nitrogen concentration was predominantly negative. However, the effect of increased snow cover on the level of herbivory remained predominantly positive. The strong within-year relationship between snow-melt date (via plant phenology) and plant nitrogen concentration and level of herbivory could not predict inter-annual variation in the effect of snow manipulation. I did not find any conclusive evidence for a single factor causing the inter-annual opposing effect of snow addition, but the results indicated that interactions with summer and winter temperatures might be important. In conclusion, this thesis showed that climate-induced changes in snow conditions will have strong effects on plant traits and plant-herbivore interactions. However, alterations in snow cover do not influence all plant traits and the effect may vary in time and space.
4

On Recurrent and Deep Neural Networks

Pascanu, Razvan 05 1900 (has links)
L'apprentissage profond est un domaine de recherche en forte croissance en apprentissage automatique qui est parvenu à des résultats impressionnants dans différentes tâches allant de la classification d'images à la parole, en passant par la modélisation du langage. Les réseaux de neurones récurrents, une sous-classe d'architecture profonde, s'avèrent particulièrement prometteurs. Les réseaux récurrents peuvent capter la structure temporelle dans les données. Ils ont potentiellement la capacité d'apprendre des corrélations entre des événements éloignés dans le temps et d'emmagasiner indéfiniment des informations dans leur mémoire interne. Dans ce travail, nous tentons d'abord de comprendre pourquoi la profondeur est utile. Similairement à d'autres travaux de la littérature, nos résultats démontrent que les modèles profonds peuvent être plus efficaces pour représenter certaines familles de fonctions comparativement aux modèles peu profonds. Contrairement à ces travaux, nous effectuons notre analyse théorique sur des réseaux profonds acycliques munis de fonctions d'activation linéaires par parties, puisque ce type de modèle est actuellement l'état de l'art dans différentes tâches de classification. La deuxième partie de cette thèse porte sur le processus d'apprentissage. Nous analysons quelques techniques d'optimisation proposées récemment, telles l'optimisation Hessian free, la descente de gradient naturel et la descente des sous-espaces de Krylov. Nous proposons le cadre théorique des méthodes à région de confiance généralisées et nous montrons que plusieurs de ces algorithmes développés récemment peuvent être vus dans cette perspective. Nous argumentons que certains membres de cette famille d'approches peuvent être mieux adaptés que d'autres à l'optimisation non convexe. La dernière partie de ce document se concentre sur les réseaux de neurones récurrents. Nous étudions d'abord le concept de mémoire et tentons de répondre aux questions suivantes: Les réseaux récurrents peuvent-ils démontrer une mémoire sans limite? Ce comportement peut-il être appris? Nous montrons que cela est possible si des indices sont fournis durant l'apprentissage. Ensuite, nous explorons deux problèmes spécifiques à l'entraînement des réseaux récurrents, à savoir la dissipation et l'explosion du gradient. Notre analyse se termine par une solution au problème d'explosion du gradient qui implique de borner la norme du gradient. Nous proposons également un terme de régularisation conçu spécifiquement pour réduire le problème de dissipation du gradient. Sur un ensemble de données synthétique, nous montrons empiriquement que ces mécanismes peuvent permettre aux réseaux récurrents d'apprendre de façon autonome à mémoriser des informations pour une période de temps indéfinie. Finalement, nous explorons la notion de profondeur dans les réseaux de neurones récurrents. Comparativement aux réseaux acycliques, la définition de profondeur dans les réseaux récurrents est souvent ambiguë. Nous proposons différentes façons d'ajouter de la profondeur dans les réseaux récurrents et nous évaluons empiriquement ces propositions. / Deep Learning is a quickly growing area of research in machine learning, providing impressive results on different tasks ranging from image classification to speech and language modelling. In particular, a subclass of deep models, recurrent neural networks, promise even more. Recurrent models can capture the temporal structure in the data. They can learn correlations between events that might be far apart in time and, potentially, store information for unbounded amounts of time in their innate memory. In this work we first focus on understanding why depth is useful. Similar to other published work, our results prove that deep models can be more efficient at expressing certain families of functions compared to shallow models. Different from other work, we carry out our theoretical analysis on deep feedforward networks with piecewise linear activation functions, the kind of models that have obtained state of the art results on different classification tasks. The second part of the thesis looks at the learning process. We analyse a few recently proposed optimization techniques, including Hessian Free Optimization, natural gradient descent and Krylov Subspace Descent. We propose the framework of generalized trust region methods and show that many of these recently proposed algorithms can be viewed from this perspective. We argue that certain members of this family of approaches might be better suited for non-convex optimization than others. The last part of the document focuses on recurrent neural networks. We start by looking at the concept of memory. The questions we attempt to answer are: Can recurrent models exhibit unbounded memory? Can this behaviour be learnt? We show this to be true if hints are provided during learning. We explore, afterwards, two specific difficulties of training recurrent models, namely the vanishing gradients and exploding gradients problem. Our analysis concludes with a heuristic solution for the exploding gradients that involves clipping the norm of the gradients. We also propose a specific regularization term meant to address the vanishing gradients problem. On a toy dataset, employing these mechanisms, we provide anecdotal evidence that the recurrent model might be able to learn, with out hints, to exhibit some sort of unbounded memory. Finally we explore the concept of depth for recurrent neural networks. Compared to feedforward models, for recurrent models the meaning of depth can be ambiguous. We provide several ways in which a recurrent model can be made deep and empirically evaluate these proposals.
5

Factorized second order methods in neural networks

George, Thomas 08 1900 (has links)
No description available.
6

Modélisation et traitement statistique d'images de microscopie confocale : application en dermatologie / Modeling and statistical treatment of confocal microscopy images : application in dermatology

Halimi, Abdelghafour 04 December 2017 (has links)
Dans cette thèse, nous développons des modèles et des méthodes statistiques pour le traitement d’images de microscopie confocale de la peau dans le but de détecter une maladie de la peau appelée lentigo. Une première contribution consiste à proposer un modèle statistique paramétrique pour représenter la texture dans le domaine des ondelettes. Plus précisément, il s’agit d’une distribution gaussienne généralisée dont on montre que le paramètre d’échelle est caractéristique des tissus sousjacents. La modélisation des données dans le domaine de l’image est un autre sujet traité dans cette thèse. A cette fin, une distribution gamma généralisée est proposée. Notre deuxième contribution consiste alors à développer un estimateur efficace des paramètres de cette loi à l’aide d’une descente de gradient naturel. Finalement, un modèle d’observation de bruit multiplicatif est établi pour expliquer la distribution gamma généralisée des données. Des méthodes d’inférence bayésienne paramétrique sont ensuite développées avec ce modèle pour permettre la classification d’images saines et présentant un lentigo. Les algorithmes développés sont appliqués à des images réelles obtenues d’une étude clinique dermatologique. / In this work, we develop statistical models and processing methods for confocal microscopy images. The first contribution consists of a parametric statistical model to represent textures in the wavelet domain. Precisely, a generalized Gaussian distribution is proposed, whose scale parameter is shown to be discriminant of the underlying tissues. The thesis deals also with modeling data in the image domain using the generalized gamma distribution. The second contribution develops an efficient parameter estimator for this distribution based on a natural gradient approach. The third contribution establishes a multiplicative noise observation model to explain the distribution of the data. Parametric Bayesian inference methods are subsequently developed based on this model to classify healthy and lentigo images. All algorithms developed in this thesis have been applied to real images from a dermatologic clinical study.
7

Improving sampling, optimization and feature extraction in Boltzmann machines

Desjardins, Guillaume 12 1900 (has links)
L’apprentissage supervisé de réseaux hiérarchiques à grande échelle connaît présentement un succès fulgurant. Malgré cette effervescence, l’apprentissage non-supervisé représente toujours, selon plusieurs chercheurs, un élément clé de l’Intelligence Artificielle, où les agents doivent apprendre à partir d’un nombre potentiellement limité de données. Cette thèse s’inscrit dans cette pensée et aborde divers sujets de recherche liés au problème d’estimation de densité par l’entremise des machines de Boltzmann (BM), modèles graphiques probabilistes au coeur de l’apprentissage profond. Nos contributions touchent les domaines de l’échantillonnage, l’estimation de fonctions de partition, l’optimisation ainsi que l’apprentissage de représentations invariantes. Cette thèse débute par l’exposition d’un nouvel algorithme d'échantillonnage adaptatif, qui ajuste (de fa ̧con automatique) la température des chaînes de Markov sous simulation, afin de maintenir une vitesse de convergence élevée tout au long de l’apprentissage. Lorsqu’utilisé dans le contexte de l’apprentissage par maximum de vraisemblance stochastique (SML), notre algorithme engendre une robustesse accrue face à la sélection du taux d’apprentissage, ainsi qu’une meilleure vitesse de convergence. Nos résultats sont présent ́es dans le domaine des BMs, mais la méthode est générale et applicable à l’apprentissage de tout modèle probabiliste exploitant l’échantillonnage par chaînes de Markov. Tandis que le gradient du maximum de vraisemblance peut-être approximé par échantillonnage, l’évaluation de la log-vraisemblance nécessite un estimé de la fonction de partition. Contrairement aux approches traditionnelles qui considèrent un modèle donné comme une boîte noire, nous proposons plutôt d’exploiter la dynamique de l’apprentissage en estimant les changements successifs de log-partition encourus à chaque mise à jour des paramètres. Le problème d’estimation est reformulé comme un problème d’inférence similaire au filtre de Kalman, mais sur un graphe bi-dimensionnel, où les dimensions correspondent aux axes du temps et au paramètre de température. Sur le thème de l’optimisation, nous présentons également un algorithme permettant d’appliquer, de manière efficace, le gradient naturel à des machines de Boltzmann comportant des milliers d’unités. Jusqu’à présent, son adoption était limitée par son haut coût computationel ainsi que sa demande en mémoire. Notre algorithme, Metric-Free Natural Gradient (MFNG), permet d’éviter le calcul explicite de la matrice d’information de Fisher (et son inverse) en exploitant un solveur linéaire combiné à un produit matrice-vecteur efficace. L’algorithme est prometteur: en terme du nombre d’évaluations de fonctions, MFNG converge plus rapidement que SML. Son implémentation demeure malheureusement inefficace en temps de calcul. Ces travaux explorent également les mécanismes sous-jacents à l’apprentissage de représentations invariantes. À cette fin, nous utilisons la famille de machines de Boltzmann restreintes “spike & slab” (ssRBM), que nous modifions afin de pouvoir modéliser des distributions binaires et parcimonieuses. Les variables latentes binaires de la ssRBM peuvent être rendues invariantes à un sous-espace vectoriel, en associant à chacune d’elles, un vecteur de variables latentes continues (dénommées “slabs”). Ceci se traduit par une invariance accrue au niveau de la représentation et un meilleur taux de classification lorsque peu de données étiquetées sont disponibles. Nous terminons cette thèse sur un sujet ambitieux: l’apprentissage de représentations pouvant séparer les facteurs de variations présents dans le signal d’entrée. Nous proposons une solution à base de ssRBM bilinéaire (avec deux groupes de facteurs latents) et formulons le problème comme l’un de “pooling” dans des sous-espaces vectoriels complémentaires. / Despite the current widescale success of deep learning in training large scale hierarchical models through supervised learning, unsupervised learning promises to play a crucial role towards solving general Artificial Intelligence, where agents are expected to learn with little to no supervision. The work presented in this thesis tackles the problem of unsupervised feature learning and density estimation, using a model family at the heart of the deep learning phenomenon: the Boltzmann Machine (BM). We present contributions in the areas of sampling, partition function estimation, optimization and the more general topic of invariant feature learning. With regards to sampling, we present a novel adaptive parallel tempering method which dynamically adjusts the temperatures under simulation to maintain good mixing in the presence of complex multi-modal distributions. When used in the context of stochastic maximum likelihood (SML) training, the improved ergodicity of our sampler translates to increased robustness to learning rates and faster per epoch convergence. Though our application is limited to BM, our method is general and is applicable to sampling from arbitrary probabilistic models using Markov Chain Monte Carlo (MCMC) techniques. While SML gradients can be estimated via sampling, computing data likelihoods requires an estimate of the partition function. Contrary to previous approaches which consider the model as a black box, we provide an efficient algorithm which instead tracks the change in the log partition function incurred by successive parameter updates. Our algorithm frames this estimation problem as one of filtering performed over a 2D lattice, with one dimension representing time and the other temperature. On the topic of optimization, our thesis presents a novel algorithm for applying the natural gradient to large scale Boltzmann Machines. Up until now, its application had been constrained by the computational and memory requirements of computing the Fisher Information Matrix (FIM), which is square in the number of parameters. The Metric-Free Natural Gradient algorithm (MFNG) avoids computing the FIM altogether by combining a linear solver with an efficient matrix-vector operation. The method shows promise in that the resulting updates yield faster per-epoch convergence, despite being slower in terms of wall clock time. Finally, we explore how invariant features can be learnt through modifications to the BM energy function. We study the problem in the context of the spike & slab Restricted Boltzmann Machine (ssRBM), which we extend to handle both binary and sparse input distributions. By associating each spike with several slab variables, latent variables can be made invariant to a rich, high dimensional subspace resulting in increased invariance in the learnt representation. When using the expected model posterior as input to a classifier, increased invariance translates to improved classification accuracy in the low-label data regime. We conclude by showing a connection between invariance and the more powerful concept of disentangling factors of variation. While invariance can be achieved by pooling over subspaces, disentangling can be achieved by learning multiple complementary views of the same subspace. In particular, we show how this can be achieved using third-order BMs featuring multiplicative interactions between pairs of random variables.
8

Improving sampling, optimization and feature extraction in Boltzmann machines

Desjardins, Guillaume 12 1900 (has links)
L’apprentissage supervisé de réseaux hiérarchiques à grande échelle connaît présentement un succès fulgurant. Malgré cette effervescence, l’apprentissage non-supervisé représente toujours, selon plusieurs chercheurs, un élément clé de l’Intelligence Artificielle, où les agents doivent apprendre à partir d’un nombre potentiellement limité de données. Cette thèse s’inscrit dans cette pensée et aborde divers sujets de recherche liés au problème d’estimation de densité par l’entremise des machines de Boltzmann (BM), modèles graphiques probabilistes au coeur de l’apprentissage profond. Nos contributions touchent les domaines de l’échantillonnage, l’estimation de fonctions de partition, l’optimisation ainsi que l’apprentissage de représentations invariantes. Cette thèse débute par l’exposition d’un nouvel algorithme d'échantillonnage adaptatif, qui ajuste (de fa ̧con automatique) la température des chaînes de Markov sous simulation, afin de maintenir une vitesse de convergence élevée tout au long de l’apprentissage. Lorsqu’utilisé dans le contexte de l’apprentissage par maximum de vraisemblance stochastique (SML), notre algorithme engendre une robustesse accrue face à la sélection du taux d’apprentissage, ainsi qu’une meilleure vitesse de convergence. Nos résultats sont présent ́es dans le domaine des BMs, mais la méthode est générale et applicable à l’apprentissage de tout modèle probabiliste exploitant l’échantillonnage par chaînes de Markov. Tandis que le gradient du maximum de vraisemblance peut-être approximé par échantillonnage, l’évaluation de la log-vraisemblance nécessite un estimé de la fonction de partition. Contrairement aux approches traditionnelles qui considèrent un modèle donné comme une boîte noire, nous proposons plutôt d’exploiter la dynamique de l’apprentissage en estimant les changements successifs de log-partition encourus à chaque mise à jour des paramètres. Le problème d’estimation est reformulé comme un problème d’inférence similaire au filtre de Kalman, mais sur un graphe bi-dimensionnel, où les dimensions correspondent aux axes du temps et au paramètre de température. Sur le thème de l’optimisation, nous présentons également un algorithme permettant d’appliquer, de manière efficace, le gradient naturel à des machines de Boltzmann comportant des milliers d’unités. Jusqu’à présent, son adoption était limitée par son haut coût computationel ainsi que sa demande en mémoire. Notre algorithme, Metric-Free Natural Gradient (MFNG), permet d’éviter le calcul explicite de la matrice d’information de Fisher (et son inverse) en exploitant un solveur linéaire combiné à un produit matrice-vecteur efficace. L’algorithme est prometteur: en terme du nombre d’évaluations de fonctions, MFNG converge plus rapidement que SML. Son implémentation demeure malheureusement inefficace en temps de calcul. Ces travaux explorent également les mécanismes sous-jacents à l’apprentissage de représentations invariantes. À cette fin, nous utilisons la famille de machines de Boltzmann restreintes “spike & slab” (ssRBM), que nous modifions afin de pouvoir modéliser des distributions binaires et parcimonieuses. Les variables latentes binaires de la ssRBM peuvent être rendues invariantes à un sous-espace vectoriel, en associant à chacune d’elles, un vecteur de variables latentes continues (dénommées “slabs”). Ceci se traduit par une invariance accrue au niveau de la représentation et un meilleur taux de classification lorsque peu de données étiquetées sont disponibles. Nous terminons cette thèse sur un sujet ambitieux: l’apprentissage de représentations pouvant séparer les facteurs de variations présents dans le signal d’entrée. Nous proposons une solution à base de ssRBM bilinéaire (avec deux groupes de facteurs latents) et formulons le problème comme l’un de “pooling” dans des sous-espaces vectoriels complémentaires. / Despite the current widescale success of deep learning in training large scale hierarchical models through supervised learning, unsupervised learning promises to play a crucial role towards solving general Artificial Intelligence, where agents are expected to learn with little to no supervision. The work presented in this thesis tackles the problem of unsupervised feature learning and density estimation, using a model family at the heart of the deep learning phenomenon: the Boltzmann Machine (BM). We present contributions in the areas of sampling, partition function estimation, optimization and the more general topic of invariant feature learning. With regards to sampling, we present a novel adaptive parallel tempering method which dynamically adjusts the temperatures under simulation to maintain good mixing in the presence of complex multi-modal distributions. When used in the context of stochastic maximum likelihood (SML) training, the improved ergodicity of our sampler translates to increased robustness to learning rates and faster per epoch convergence. Though our application is limited to BM, our method is general and is applicable to sampling from arbitrary probabilistic models using Markov Chain Monte Carlo (MCMC) techniques. While SML gradients can be estimated via sampling, computing data likelihoods requires an estimate of the partition function. Contrary to previous approaches which consider the model as a black box, we provide an efficient algorithm which instead tracks the change in the log partition function incurred by successive parameter updates. Our algorithm frames this estimation problem as one of filtering performed over a 2D lattice, with one dimension representing time and the other temperature. On the topic of optimization, our thesis presents a novel algorithm for applying the natural gradient to large scale Boltzmann Machines. Up until now, its application had been constrained by the computational and memory requirements of computing the Fisher Information Matrix (FIM), which is square in the number of parameters. The Metric-Free Natural Gradient algorithm (MFNG) avoids computing the FIM altogether by combining a linear solver with an efficient matrix-vector operation. The method shows promise in that the resulting updates yield faster per-epoch convergence, despite being slower in terms of wall clock time. Finally, we explore how invariant features can be learnt through modifications to the BM energy function. We study the problem in the context of the spike & slab Restricted Boltzmann Machine (ssRBM), which we extend to handle both binary and sparse input distributions. By associating each spike with several slab variables, latent variables can be made invariant to a rich, high dimensional subspace resulting in increased invariance in the learnt representation. When using the expected model posterior as input to a classifier, increased invariance translates to improved classification accuracy in the low-label data regime. We conclude by showing a connection between invariance and the more powerful concept of disentangling factors of variation. While invariance can be achieved by pooling over subspaces, disentangling can be achieved by learning multiple complementary views of the same subspace. In particular, we show how this can be achieved using third-order BMs featuring multiplicative interactions between pairs of random variables.
9

Steepest descent as Linear Quadratic Regulation

Dufort-Labbé, Simon 08 1900 (has links)
Concorder un modèle à certaines observations, voilà qui résume assez bien ce que l’apprentissage machine cherche à accomplir. Ce concept est maintenant omniprésent dans nos vies, entre autre grâce aux percées récentes en apprentissage profond. La stratégie d’optimisation prédominante pour ces deux domaines est la minimisation d’un objectif donné. Et pour cela, la méthode du gradient, méthode de premier-ordre qui modifie les paramètres du modèle à chaque itération, est l’approche dominante. À l’opposé, les méthodes dites de second ordre n’ont jamais réussi à s’imposer en apprentissage profond. Pourtant, elles offrent des avantages reconnus qui soulèvent encore un grand intérêt. D’où l’importance de la méthode du col, qui unifie les méthodes de premier et second ordre sous un même paradigme. Dans ce mémoire, nous établissons un parralèle direct entre la méthode du col et le domaine du contrôle optimal ; domaine qui cherche à optimiser mathématiquement une séquence de décisions. Et certains des problèmes les mieux compris et étudiés en contrôle optimal sont les commandes linéaires quadratiques. Problèmes pour lesquels on connaît très bien la solution optimale. Plus spécifiquement, nous démontrerons l’équivalence entre une itération de la méthode du col et la résolution d’une Commande Linéaire Quadratique (CLQ). Cet éclairage nouveau implique une approche unifiée quand vient le temps de déployer nombre d’algorithmes issus de la méthode du col, tel que la méthode du gradient et celle des gradients naturels, sans être limitée à ceux-ci. Approche que nous étendons ensuite aux problèmes à horizon infini, tel que les modèles à équilibre profond. Ce faisant, nous démontrons pour ces problèmes que calculer les gradients via la différentiation implicite revient à employer l’équation de Riccati pour solutionner la CLQ associée à la méthode du gradient. Finalement, notons que l’incorporation d’information sur la courbure du problème revient généralement à rencontrer une inversion matricielle dans la méthode du col. Nous montrons que l’équivalence avec les CLQ permet de contourner cette inversion en utilisant une approximation issue des séries de Neumann. Surprenamment, certaines observations empiriques suggèrent que cette approximation aide aussi à stabiliser le processus d’optimisation quand des méthodes de second-ordre sont impliquées ; en agissant comme un régularisateur adaptif implicite. / Machine learning entails training a model to fit some given observations, and recent advances in the field, particularly in deep learning, have made it omnipresent in our lives. Fitting a model usually requires the minimization of a given objective. When it comes to deep learning, first-order methods like gradient descent have become a default tool for optimization in deep learning. On the other hand, second-order methods did not see widespread use in deep learning. Yet, they hold many promises and are still a very active field of research. An important perspective into both methods is steepest descent, which allows you to encompass first and second-order approaches into the same framework. In this thesis, we establish an explicit connection between steepest descent and optimal control, a field that tries to optimize sequential decision-making processes. Core to it is the family of problems known as Linear Quadratic Regulation; problems that have been well studied and for which we know optimal solutions. More specifically, we show that performing one iteration of steepest descent is equivalent to solving a Linear Quadratic Regulator (LQR). This perspective gives us a convenient and unified framework for deploying a wide range of steepest descent algorithms, such as gradient descent and natural gradient descent, but certainly not limited to. This framework can also be extended to problems with an infinite horizon, such as deep equilibrium models. Doing so reveals that retrieving the gradient via implicit differentiation is equivalent to recovering it via Riccati’s solution to the LQR associated with gradient descent. Finally, incorporating curvature information into steepest descent usually takes the form of a matrix inversion. However, casting a steepest descent step as a LQR also hints toward a trick that allows to sidestep this inversion, by leveraging Neumann’s series approximation. Empirical observations provide evidence that this approximation actually helps to stabilize the training process, by acting as an adaptive damping parameter.
10

Advances in parameterisation, optimisation and pruning of neural networks

Laurent, César 10 1900 (has links)
Les réseaux de neurones sont une famille de modèles de l'apprentissage automatique qui sont capable d'apprendre des tâches complexes directement des données. Bien que produisant déjà des résultats impressionnants dans beaucoup de domaines tels que la reconnaissance de la parole, la vision par ordinateur ou encore la traduction automatique, il y a encore de nombreux défis dans l'entraînement et dans le déploiement des réseaux de neurones. En particulier, entraîner des réseaux de neurones nécessite typiquement d'énormes ressources computationnelles, et les modèles entraînés sont souvent trop gros ou trop gourmands en ressources pour être déployés sur des appareils dont les ressources sont limitées, tels que les téléphones intelligents ou les puces de faible puissance. Les articles présentés dans cette thèse étudient des solutions à ces différents problèmes. Les deux premiers articles se concentrent sur l'amélioration de l'entraînement des réseaux de neurones récurrents (RNNs), un type de réseaux de neurones particulier conçu pour traiter des données séquentielles. Les RNNs sont notoirement difficiles à entraîner, donc nous proposons d'améliorer leur paramétrisation en y intégrant la normalisation par lots (BN), qui était jusqu'à lors uniquement appliquée aux réseaux non-récurrents. Dans le premier article, nous appliquons BN aux connections des entrées vers les couches cachées du RNN, ce qui réduit le décalage covariable entre les différentes couches; et dans le second article, nous montrons comment appliquer BN aux connections des entrées vers les couches cachées et aussi des couches cachée vers les couches cachée des réseau récurrents à mémoire court et long terme (LSTM), une architecture populaire de RNN, ce qui réduit également le décalage covariable entre les pas de temps. Nos expériences montrent que les paramétrisations proposées permettent d'entraîner plus rapidement et plus efficacement les RNNs, et ce sur différents bancs de tests. Dans le troisième article, nous proposons un nouvel optimiseur pour accélérer l'entraînement des réseaux de neurones. Les optimiseurs diagonaux traditionnels, tels que RMSProp, opèrent dans l'espace des paramètres, ce qui n'est pas optimal lorsque plusieurs paramètres sont mis à jour en même temps. A la place, nous proposons d'appliquer de tels optimiseurs dans une base dans laquelle l'approximation diagonale est susceptible d'être plus efficace. Nous tirons parti de l'approximation K-FAC pour construire efficacement cette base propre Kronecker-factorisée (KFE). Nos expériences montrent une amélioration en vitesse d'entraînement par rapport à K-FAC, et ce pour différentes architectures de réseaux de neurones profonds. Le dernier article se concentre sur la taille des réseaux de neurones, i.e. l'action d'enlever des paramètres du réseau, afin de réduire son empreinte mémoire et son coût computationnel. Les méthodes de taille typique se base sur une approximation de Taylor de premier ou de second ordre de la fonction de coût, afin d'identifier quels paramètres peuvent être supprimés. Nous proposons d'étudier l'impact des hypothèses qui se cachent derrière ces approximations. Aussi, nous comparons systématiquement les méthodes basées sur des approximations de premier et de second ordre avec la taille par magnitude (MP), et montrons comment elles fonctionnent à la fois avant, mais aussi après une phase de réapprentissage. Nos expériences montrent que mieux préserver la fonction de coût ne transfère pas forcément à des réseaux qui performent mieux après la phase de réapprentissage, ce qui suggère que considérer uniquement l'impact de la taille sur la fonction de coût ne semble pas être un objectif suffisant pour développer des bon critères de taille. / Neural networks are a family of Machine Learning models able to learn complex tasks directly from the data. Although already producing impressive results in many areas such as speech recognition, computer vision or machine translation, there are still a lot of challenges in both training and deployment of neural networks. In particular, training neural networks typically requires huge amounts of computational resources, and trained models are often too big or too computationally expensive to be deployed on resource-limited devices, such as smartphones or low-power chips. The articles presented in this thesis investigate solutions to these different issues. The first couple of articles focus on improving the training of Recurrent Neural Networks (RNNs), networks specially designed to process sequential data. RNNs are notoriously hard to train, so we propose to improve their parameterisation by upgrading them with Batch Normalisation (BN), a very effective parameterisation which was hitherto used only in feed-forward networks. In the first article, we apply BN to the input-to-hidden connections of the RNNs, thereby reducing internal covariate shift between layers. In the second article, we show how to apply it to both input-to-hidden and hidden-to-hidden connections of the Long Short-Term Memory (LSTM), a popular RNN architecture, thus also reducing internal covariate shift between time steps. Our experiments show that these proposed parameterisations allow for faster and better training of RNNs on several benchmarks. In the third article, we propose a new optimiser to accelerate the training of neural networks. Traditional diagonal optimisers, such as RMSProp, operate in parameters coordinates, which is not optimal when several parameters are updated at the same time. Instead, we propose to apply such optimisers in a basis in which the diagonal approximation is likely to be more effective. We leverage the same approximation used in Kronecker-factored Approximate Curvature (K-FAC) to efficiently build this Kronecker-factored Eigenbasis (KFE). Our experiments show improvements over K-FAC in training speed for several deep network architectures. The last article focuses on network pruning, the action of removing parameters from the network, in order to reduce its memory footprint and computational cost. Typical pruning methods rely on first or second order Taylor approximations of the loss landscape to identify which parameters can be discarded. We propose to study the impact of the assumptions behind such approximations. Moreover, we systematically compare methods based on first and second order approximations with Magnitude Pruning (MP), showing how they perform both before and after a fine-tuning phase. Our experiments show that better preserving the original network function does not necessarily transfer to better performing networks after fine-tuning, suggesting that only considering the impact of pruning on the loss might not be a sufficient objective to design good pruning criteria.

Page generated in 0.0831 seconds