• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enabling Trimap-Free Image Matting via Multitask Learning

LI, CHENGQI January 2021 (has links)
Trimap-free natural image matting problem is an important computer vision task in which we extract foreground objects from given images without extra trimap input. Compared with trimap-based matting algorithms, trimap-free algorithms are easier to make false detection when the foreground object is not well defined. To solve the problem, we design a novel structure (SegMatting) to handle foreground segmentation and alpha matte prediction simultaneously, which is able to produce high-quality mattes based on RGB inputs alone. This entangled structure enables information exchange between the binary segmentation task and the alpha matte prediction task interactively, and we further design a hybrid loss to adaptively balance two tasks during the multitask learning process. Additionally, we adopt a salient object detection dataset to pretrain our network so that we could obtain a more accurate foreground segment before our training process. Experiments indicate that the proposed SegMatting qualitatively and quantitatively outperforms most previous trimap-free models with a significant margin, while remains competitive among trimap-based methods. / Thesis / Master of Science in Electrical and Computer Engineering (MSECE)
2

Automatic 3D human modeling: an initial stage towards 2-way inside interaction in mixed reality

Xiong, Yiyan 01 January 2014 (has links)
3D human models play an important role in computer graphics applications from a wide range of domains, including education, entertainment, medical care simulation and military training. In many situations, we want the 3D model to have a visual appearance that matches that of a specific living person and to be able to be controlled by that person in a natural manner. Among other uses, this approach supports the notion of human surrogacy, where the virtual counterpart provides a remote presence for the human who controls the virtual character's behavior. In this dissertation, a human modeling pipeline is proposed for the problem of creating a 3D digital model of a real person. Our solution involves reshaping a 3D human template with a 2D contour of the participant and then mapping the captured texture of that person to the generated mesh. Our method produces an initial contour of a participant by extracting the user image from a natural background. One particularly novel contribution in our approach is the manner in which we improve the initial vertex estimate. We do so through a variant of the ShortStraw corner-finding algorithm commonly used in sketch-based systems. Here, we develop improvements to ShortStraw, presenting an algorithm called IStraw, and then introduce adaptations of this improved version to create a corner-based contour segmentatiuon algorithm. This algorithm provides significant improvements on contour matching over previously developed systems, and does so with low computational complexity. The system presented here advances the state of the art in the following aspects. First, the human modeling process is triggered automatically by matching the participant's pose with an initial pose through a tracking device and software. In our case, the pose capture and skeletal model are provided by the Microsoft Kinect and its associated SDK. Second, color image, depth data, and human tracking information from the Kinect and its SDK are used to automatically extract the contour of the participant and then generate a 3D human model with skeleton. Third, using the pose and the skeletal model, we segment the contour into eight parts and then match the contour points on each segment to a corresponding anchor set associated with a 3D human template. Finally, we map the color image of the person to the 3D model as its corresponding texture map. The whole modeling process only take several seconds and the resulting human model looks like the real person. The geometry of the 3D model matches the contour of the real person, and the model has a photorealistic texture. Furthermore, the mesh of the human model is attached to the skeleton provided in the template, so the model can support programmed animations or be controlled by real people. This human control is commonly done through a literal mapping (motion capture) or a gesture-based puppetry system. Our ultimate goal is to create a mixed reality (MR) system, in which the participants can manipulate virtual objects, and in which these virtual objects can affect the participant, e.g., by restricting their mobility. This MR system prototype design motivated the work of this dissertation, since a realistic 3D human model of the participant is an essential part of implementing this vision.
3

Towards Real-time Mixed Reality Matting In Natural Scenes

Beato, Nicholas 01 January 2012 (has links)
In Mixed Reality scenarios, background replacement is a common way to immerse a user in a synthetic environment. Properly identifying the background pixels in an image or video is a dif- ficult problem known as matting. Proper alpha mattes usually come from human guidance, special hardware setups, or color dependent algorithms. This is a consequence of the under-constrained nature of the per pixel alpha blending equation. In constant color matting, research identifies and replaces a background that is a single color, known as the chroma key color. Unfortunately, the algorithms force a controlled physical environment and favor constant, uniform lighting. More generic approaches, such as natural image matting, have made progress finding alpha matte solutions in environments with naturally occurring backgrounds. However, even for the quicker algorithms, the generation of trimaps, indicating regions of known foreground and background pixels, normally requires human interaction or offline computation. This research addresses ways to automatically solve an alpha matte for an image in realtime, and by extension a video, using a consumer level GPU. It does so even in the context of noisy environments that result in less reliable constraints than found in controlled settings. To attack these challenges, we are particularly interested in automatically generating trimaps from depth buffers for dynamic scenes so that algorithms requiring more dense constraints may be used. The resulting computation is parallelizable so that it may run on a GPU and should work for natural images as well as chroma key backgrounds. Extra input may be required, but when this occurs, commodity hardware available in most Mixed Reality setups should be able to provide the input. This allows us to provide real-time alpha mattes for Mixed Reality scenarios that take place in relatively controlled environments. As a consequence, while monochromatic backdrops (such as green screens or retro-reflective material) aid the algorithm’s accuracy, they are not an explicit requirement. iii Finally we explore a sub-image based approach to parallelize an existing hierarchical approach on high resolution imagery. We show that locality can be exploited to significantly reduce the memory and compute requirements of previously necessary when computing alpha mattes of high resolution images. We achieve this using a parallelizable scheme that is both independent of the matting algorithm and image features. Combined, these research topics provide a basis for Mixed Reality scenarios using real-time natural image matting on high definition video sources.

Page generated in 0.1225 seconds