• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 203
  • 34
  • 32
  • 27
  • 10
  • 6
  • 5
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 380
  • 200
  • 189
  • 100
  • 94
  • 91
  • 80
  • 76
  • 76
  • 68
  • 66
  • 58
  • 57
  • 56
  • 53
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Bank Customer Churn Prediction : A comparison between classification and evaluation methods

Tandan, Isabelle, Goteman, Erika January 2020 (has links)
This study aims to assess which supervised statistical learning method; random forest, logistic regression or K-nearest neighbor, that is the best at predicting banks customer churn. Additionally, the study evaluates which cross-validation set approach; k-Fold cross-validation or leave-one-out cross-validation that yields the most reliable results. Predicting customer churn has increased in popularity since new technology, regulation and changed demand has led to an increase in competition for banks. Thus, with greater reason, banks acknowledge the importance of maintaining their customer base.   The findings of this study are that unrestricted random forest model estimated using k-Fold is to prefer out of performance measurements, computational efficiency and a theoretical point of view. Albeit, k-Fold cross-validation and leave-one-out cross-validation yield similar results, k-Fold cross-validation is to prefer due to computational advantages.   For future research, methods that generate models with both good interpretability and high predictability would be beneficial. In order to combine the knowledge of which customers end their engagement as well as understanding why. Moreover, interesting future research would be to analyze at which dataset size leave-one-out cross-validation and k-Fold cross-validation yield the same results.
312

An Efficient Classification Model for Analyzing Skewed Data to Detect Frauds in the Financial Sector / Un modèle de classification efficace pour l'analyse des données déséquilibrées pour détecter les fraudes dans le secteur financier

Makki, Sara 16 December 2019 (has links)
Différents types de risques existent dans le domaine financier, tels que le financement du terrorisme, le blanchiment d’argent, la fraude de cartes de crédit, la fraude d’assurance, les risques de crédit, etc. Tout type de fraude peut entraîner des conséquences catastrophiques pour des entités telles que les banques ou les compagnies d’assurances. Ces risques financiers sont généralement détectés à l'aide des algorithmes de classification. Dans les problèmes de classification, la distribution asymétrique des classes, également connue sous le nom de déséquilibre de classe (class imbalance), est un défi très commun pour la détection des fraudes. Des approches spéciales d'exploration de données sont utilisées avec les algorithmes de classification traditionnels pour résoudre ce problème. Le problème de classes déséquilibrées se produit lorsque l'une des classes dans les données a beaucoup plus d'observations que l’autre classe. Ce problème est plus vulnérable lorsque l'on considère dans le contexte des données massives (Big Data). Les données qui sont utilisées pour construire les modèles contiennent une très petite partie de groupe minoritaire qu’on considère positifs par rapport à la classe majoritaire connue sous le nom de négatifs. Dans la plupart des cas, il est plus délicat et crucial de classer correctement le groupe minoritaire plutôt que l'autre groupe, comme la détection de la fraude, le diagnostic d’une maladie, etc. Dans ces exemples, la fraude et la maladie sont les groupes minoritaires et il est plus délicat de détecter un cas de fraude en raison de ses conséquences dangereuses qu'une situation normale. Ces proportions de classes dans les données rendent très difficile à l'algorithme d'apprentissage automatique d'apprendre les caractéristiques et les modèles du groupe minoritaire. Ces algorithmes seront biaisés vers le groupe majoritaire en raison de leurs nombreux exemples dans l'ensemble de données et apprendront à les classer beaucoup plus rapidement que l'autre groupe. Dans ce travail, nous avons développé deux approches : Une première approche ou classifieur unique basée sur les k plus proches voisins et utilise le cosinus comme mesure de similarité (Cost Sensitive Cosine Similarity K-Nearest Neighbors : CoSKNN) et une deuxième approche ou approche hybride qui combine plusieurs classifieurs uniques et fondu sur l'algorithme k-modes (K-modes Imbalanced Classification Hybrid Approach : K-MICHA). Dans l'algorithme CoSKNN, notre objectif était de résoudre le problème du déséquilibre en utilisant la mesure de cosinus et en introduisant un score sensible au coût pour la classification basée sur l'algorithme de KNN. Nous avons mené une expérience de validation comparative au cours de laquelle nous avons prouvé l'efficacité de CoSKNN en termes de taux de classification correcte et de détection des fraudes. D’autre part, K-MICHA a pour objectif de regrouper des points de données similaires en termes des résultats de classifieurs. Ensuite, calculez les probabilités de fraude dans les groupes obtenus afin de les utiliser pour détecter les fraudes de nouvelles observations. Cette approche peut être utilisée pour détecter tout type de fraude financière, lorsque des données étiquetées sont disponibles. La méthode K-MICHA est appliquée dans 3 cas : données concernant la fraude par carte de crédit, paiement mobile et assurance automobile. Dans les trois études de cas, nous comparons K-MICHA au stacking en utilisant le vote, le vote pondéré, la régression logistique et l’algorithme CART. Nous avons également comparé avec Adaboost et la forêt aléatoire. Nous prouvons l'efficacité de K-MICHA sur la base de ces expériences. Nous avons également appliqué K-MICHA dans un cadre Big Data en utilisant H2O et R. Nous avons pu traiter et analyser des ensembles de données plus volumineux en très peu de temps / There are different types of risks in financial domain such as, terrorist financing, money laundering, credit card fraudulence and insurance fraudulence that may result in catastrophic consequences for entities such as banks or insurance companies. These financial risks are usually detected using classification algorithms. In classification problems, the skewed distribution of classes also known as class imbalance, is a very common challenge in financial fraud detection, where special data mining approaches are used along with the traditional classification algorithms to tackle this issue. Imbalance class problem occurs when one of the classes have more instances than another class. This problem is more vulnerable when we consider big data context. The datasets that are used to build and train the models contain an extremely small portion of minority group also known as positives in comparison to the majority class known as negatives. In most of the cases, it’s more delicate and crucial to correctly classify the minority group rather than the other group, like fraud detection, disease diagnosis, etc. In these examples, the fraud and the disease are the minority groups and it’s more delicate to detect a fraud record because of its dangerous consequences, than a normal one. These class data proportions make it very difficult to the machine learning classifier to learn the characteristics and patterns of the minority group. These classifiers will be biased towards the majority group because of their many examples in the dataset and will learn to classify them much faster than the other group. After conducting a thorough study to investigate the challenges faced in the class imbalance cases, we found that we still can’t reach an acceptable sensitivity (i.e. good classification of minority group) without a significant decrease of accuracy. This leads to another challenge which is the choice of performance measures used to evaluate models. In these cases, this choice is not straightforward, the accuracy or sensitivity alone are misleading. We use other measures like precision-recall curve or F1 - score to evaluate this trade-off between accuracy and sensitivity. Our objective is to build an imbalanced classification model that considers the extreme class imbalance and the false alarms, in a big data framework. We developed two approaches: A Cost-Sensitive Cosine Similarity K-Nearest Neighbor (CoSKNN) as a single classifier, and a K-modes Imbalance Classification Hybrid Approach (K-MICHA) as an ensemble learning methodology. In CoSKNN, our aim was to tackle the imbalance problem by using cosine similarity as a distance metric and by introducing a cost sensitive score for the classification using the KNN algorithm. We conducted a comparative validation experiment where we prove the effectiveness of CoSKNN in terms of accuracy and fraud detection. On the other hand, the aim of K-MICHA is to cluster similar data points in terms of the classifiers outputs. Then, calculating the fraud probabilities in the obtained clusters in order to use them for detecting frauds of new transactions. This approach can be used to the detection of any type of financial fraud, where labelled data are available. At the end, we applied K-MICHA to a credit card, mobile payment and auto insurance fraud data sets. In all three case studies, we compare K-MICHA with stacking using voting, weighted voting, logistic regression and CART. We also compared with Adaboost and random forest. We prove the efficiency of K-MICHA based on these experiments
313

Machine learning techniques for content-based information retrieval / Méthodes d’apprentissage automatique pour la recherche par le contenu de l’information

Chafik, Sanaa 22 December 2017 (has links)
Avec l’évolution des technologies numériques et la prolifération d'internet, la quantité d’information numérique a considérablement évolué. La recherche par similarité (ou recherche des plus proches voisins) est une problématique que plusieurs communautés de recherche ont tenté de résoudre. Les systèmes de recherche par le contenu de l’information constituent l’une des solutions prometteuses à ce problème. Ces systèmes sont composés essentiellement de trois unités fondamentales, une unité de représentation des données pour l’extraction des primitives, une unité d’indexation multidimensionnelle pour la structuration de l’espace des primitives, et une unité de recherche des plus proches voisins pour la recherche des informations similaires. L’information (image, texte, audio, vidéo) peut être représentée par un vecteur multidimensionnel décrivant le contenu global des données d’entrée. La deuxième unité consiste à structurer l’espace des primitives dans une structure d’index, où la troisième unité -la recherche par similarité- est effective.Dans nos travaux de recherche, nous proposons trois systèmes de recherche par le contenu de plus proches voisins. Les trois approches sont non supervisées, et donc adaptées aux données étiquetées et non étiquetées. Elles sont basées sur le concept du hachage pour une recherche efficace multidimensionnelle des plus proches voisins. Contrairement aux approches de hachage existantes, qui sont binaires, les approches proposées fournissent des structures d’index avec un hachage réel. Bien que les approches de hachage binaires fournissent un bon compromis qualité-temps de calcul, leurs performances en termes de qualité (précision) se dégradent en raison de la perte d’information lors du processus de binarisation. À l'opposé, les approches de hachage réel fournissent une bonne qualité de recherche avec une meilleure approximation de l’espace d’origine, mais induisent en général un surcoût en temps de calcul.Ce dernier problème est abordé dans la troisième contribution. Les approches proposées sont classifiées en deux catégories, superficielle et profonde. Dans la première catégorie, on propose deux techniques de hachage superficiel, intitulées Symmetries of the Cube Locality sensitive hashing (SC-LSH) et Cluster-Based Data Oriented Hashing (CDOH), fondées respectivement sur le hachage aléatoire et l’apprentissage statistique superficiel. SCLSH propose une solution au problème de l’espace mémoire rencontré par la plupart des approches de hachage aléatoire, en considérant un hachage semi-aléatoire réduisant partiellement l’effet aléatoire, et donc l’espace mémoire, de ces dernières, tout en préservant leur efficacité pour la structuration des espaces hétérogènes. La seconde technique, CDOH, propose d’éliminer l’effet aléatoire en combinant des techniques d’apprentissage non-supervisé avec le concept de hachage. CDOH fournit de meilleures performances en temps de calcul, en espace mémoire et en qualité de recherche.La troisième contribution est une approche de hachage basée sur les réseaux de neurones profonds appelée "Unsupervised Deep Neuron-per-Neuron Hashing" (UDN2H). UDN2H propose une indexation individuelle de la sortie de chaque neurone de la couche centrale d’un modèle non supervisé. Ce dernier est un auto-encodeur profond capturant une structure individuelle de haut niveau de chaque neurone de sortie.Nos trois approches, SC-LSH, CDOH et UDN2H, ont été proposées séquentiellement durant cette thèse, avec un niveau croissant, en termes de la complexité des modèles développés, et en termes de la qualité de recherche obtenue sur de grandes bases de données d'information / The amount of media data is growing at high speed with the fast growth of Internet and media resources. Performing an efficient similarity (nearest neighbor) search in such a large collection of data is a very challenging problem that the scientific community has been attempting to tackle. One of the most promising solutions to this fundamental problem is Content-Based Media Retrieval (CBMR) systems. The latter are search systems that perform the retrieval task in large media databases based on the content of the data. CBMR systems consist essentially of three major units, a Data Representation unit for feature representation learning, a Multidimensional Indexing unit for structuring the resulting feature space, and a Nearest Neighbor Search unit to perform efficient search. Media data (i.e. image, text, audio, video, etc.) can be represented by meaningful numeric information (i.e. multidimensional vector), called Feature Description, describing the overall content of the input data. The task of the second unit is to structure the resulting feature descriptor space into an index structure, where the third unit, effective nearest neighbor search, is performed.In this work, we address the problem of nearest neighbor search by proposing three Content-Based Media Retrieval approaches. Our three approaches are unsupervised, and thus can adapt to both labeled and unlabeled real-world datasets. They are based on a hashing indexing scheme to perform effective high dimensional nearest neighbor search. Unlike most recent existing hashing approaches, which favor indexing in Hamming space, our proposed methods provide index structures adapted to a real-space mapping. Although Hamming-based hashing methods achieve good accuracy-speed tradeoff, their accuracy drops owing to information loss during the binarization process. By contrast, real-space hashing approaches provide a more accurate approximation in the mapped real-space as they avoid the hard binary approximations.Our proposed approaches can be classified into shallow and deep approaches. In the former category, we propose two shallow hashing-based approaches namely, "Symmetries of the Cube Locality Sensitive Hashing" (SC-LSH) and "Cluster-based Data Oriented Hashing" (CDOH), based respectively on randomized-hashing and shallow learning-to-hash schemes. The SC-LSH method provides a solution to the space storage problem faced by most randomized-based hashing approaches. It consists of a semi-random scheme reducing partially the randomness effect of randomized hashing approaches, and thus the memory storage problem, while maintaining their efficiency in structuring heterogeneous spaces. The CDOH approach proposes to eliminate the randomness effect by combining machine learning techniques with the hashing concept. The CDOH outperforms the randomized hashing approaches in terms of computation time, memory space and search accuracy.The third approach is a deep learning-based hashing scheme, named "Unsupervised Deep Neuron-per-Neuron Hashing" (UDN2H). The UDN2H approach proposes to index individually the output of each neuron of the top layer of a deep unsupervised model, namely a Deep Autoencoder, with the aim of capturing the high level individual structure of each neuron output.Our three approaches, SC-LSH, CDOH and UDN2H, were proposed sequentially as the thesis was progressing, with an increasing level of complexity in terms of the developed models, and in terms of the effectiveness and the performances obtained on large real-world datasets
314

Detekce fibrilace síní v krátkodobých EKG záznamech / Detection of atrial fibrillation in short-term ECG

Ambrožová, Monika January 2019 (has links)
Atrial fibrillation is diagnosed in 1-2% of the population, in next decades, it expects a significant increase in the number of patients with this arrhythmia in connection with the aging of the population and the higher incidence of some diseases that are considered as risk factors of atrial fibrillation. The aim of this work is to describe the problem of atrial fibrillation and the methods that allow its detection in the ECG record. In the first part of work there is a theory dealing with cardiac physiology and atrial fibrillation. There is also basic descreption of the detection of atrial fibrillation. In the practical part of work, there is described software for detection of atrial fibrillation, which is provided by BTL company. Furthermore, an atrial fibrillation detector is designed. Several parameters were selected to detect the variation of RR intervals. These are the parameters of the standard deviation, coefficient of skewness and kurtosis, coefficient of variation, root mean square of the successive differences, normalized absolute deviation, normalized absolute difference, median absolute deviation and entropy. Three different classification models were used: support vector machine (SVM), k-nearest neighbor (KNN) and discriminant analysis classification. The SVM classification model achieves the best results. Results of success indicators (sensitivity: 67.1%; specificity: 97.0%; F-measure: 66.8%; accuracy: 92.9%).
315

Rozpoznávaní aplikací v síťovém provozu / Network-Based Application Recognition

Štourač, Jan January 2014 (has links)
This thesis introduces readers various methods that are currently used for detection of network-based applications. Further part deals with selection of appropriate detection method and implementation of proof-of-concept script, including testing its reliability and accuracy. Chosen detection algorithm is based on statistics data from network flows of tested network communication. Due to its final solution does not depend on whether communication is encrypted or not. Next part contains several possible variants of how to integrate proposed solution in the current architecture of the existing product Kernun UTM --- which is firewall produced by Trusted Network Solutions a.s. company. Most suitable variant is chosen and described furthermore in more details. Finally there is also mentioned plan for further developement and possible ways how to improve final solution.
316

Analýza experimentálních EKG záznamů / Analysis of experimental ECG

Maršánová, Lucie January 2015 (has links)
This diploma thesis deals with the analysis of experimental electrograms (EG) recorded from isolated rabbit hearts. The theoretical part is focused on the basic principles of electrocardiography, pathological events in ECGs, automatic classification of ECG and experimental cardiological research. The practical part deals with manual classification of individual pathological events – these results will be presented in the database of EG records, which is under developing at the Department of Biomedical Engineering at BUT nowadays. Manual scoring of data was discussed with experts. After that, the presence of pathological events within particular experimental periods was described and influence of ischemia on heart electrical activity was reviewed. In the last part, morphological parameters calculated from EG beats were statistically analised with Kruskal-Wallis and Tukey-Kramer tests and also principal component analysis (PCA) and used as classification features to classify automatically four types of the beats. Classification was realized with four approaches such as discriminant function analysis, k-Nearest Neighbours, support vector machines, and naive Bayes classifier.
317

Adaptivní klient pro sociální síť Twitter / Adaptive Client for Twitter Social Network

Guňka, Jiří January 2011 (has links)
The goal of this term project is create user friendly client of Twitter. They may use methods of machine learning as naive bayes classifier to mentions new interests tweets. For visualissation this tweets will be use hyperbolic trees and some others methods.
318

Automatická klasifikace spánkových fází z polysomnografických dat / Automatic sleep scoring using polysomnographic data

Vávrová, Eva January 2016 (has links)
The thesis is focused on analysis of polysomnographic signals based on extraction of chosen parameters in time, frequency and time-frequency domain. The parameters are acquired from 30 seconds long segments of EEG, EMG and EOG signals recorded during different sleep stages. The parameters used for automatic classification of sleep stages are selected according to statistical analysis. The classification is realized by artificial neural networks, k-NN classifier and linear discriminant analysis. The program with a graphical user interface was created using Matlab.
319

A influência da topografia na identificação de centralidades urbanas : estudo de caso no município de Barra do Piraí, Rio de Janeiro /

Fontoura Júnior, Caio Flávio Martinez January 2020 (has links)
Orientador: Edmur Azevedo Pugliesi / Resumo: A expansão urbana vem formando aglomerados populacionais desordenados, o que causa problemas para a administração municipal. A fim de reduzir este tipo de problema, uma das maneiras de reorganizar o território é o policentrismo, conceito que vem sendo aplicado em grande parte da área urbana de diversos países como Estados Unidos, China e países da Europa. O policentrismo pode ser entendido como uma área urbana com pluralidade de centros urbanos. Há duas abordagens para identificar possíveis centralidades: a morfológica e a funcional. Além disso, não foi encontrado quaisquer resultados de trabalhos científicos que tenham utilizado a variável inclinação do relevo nas análises de identificação de centralidades urbanas. Dessa maneira, a variável declividade pode ser um fator impactante na determinação de uma centralidade ou núcleo urbano para localidades brasileiras e que tenha característica similares da área de estudo. O objetivo desse trabalho propõe um estudo para a identificação de centralidades ou a possibilidade de identificar novos núcleos urbanos, por meio da avaliação da morfologia do terreno na formação de subcentros no município de Barra do Piraí no Estado do Rio de Janeiro, Brasil. Foram adquiridos arquivos vetoriais da base cartográfica do IBGE 2018, que posteriormente foram tratados e analisados. A fim de compreender a identificação de centralidades foram realizadas análises com a utilização da abordagem morfológica: Componentes Principais (CP), o Índice Global de ... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The urban expansion has been creating disorderly population agglomerations, which causes problems for the municipal administration. In order to reduce this type of problem, one of the ways to reorganize the territory is polycentrism, a concept that has been applied in a large part of the urban area of several countries such as the United States, China, and countries in Europe. Polycentrism can be understood as an urban area with a plurality of urban centers. There are two approaches to identify possible centralities: the morphological and the functional. In addition, no results were found from scientific studies that have used the variable slope of relief in the analysis of identification of urban centralities. Thus, the slope variable can be an impacting factor in determining a centrality or urban nucleus for Brazilian locations and which has similar characteristics of the study area. The aim of this work proposes a study for the identification of centralities or the possibility of identifying new urban centers, through the evaluation of the morphology of the land in the formation of sub-centers in the municipality of Barra do Piraí in the State of Rio de Janeiro, Brazil. Vector files were acquired from the IBGE 2018 cartographic base, which were later treated and analyzed. To understand the identification of centralities, analyzes were performed using the morphological approach: Principal Components (CP), the Moran Global Index, the Local Indicator of Spatial Association - ... (Complete abstract click electronic access below) / Mestre
320

[en] APPROXIMATE NEAREST NEIGHBOR SEARCH FOR THE KULLBACK-LEIBLER DIVERGENCE / [pt] BUSCA APROXIMADA DE VIZINHOS MAIS PRÓXIMOS PARA DIVERGÊNCIA DE KULLBACK-LEIBLER

19 March 2018 (has links)
[pt] Em uma série de aplicações, os pontos de dados podem ser representados como distribuições de probabilidade. Por exemplo, os documentos podem ser representados como modelos de tópicos, as imagens podem ser representadas como histogramas e também a música pode ser representada como uma distribuição de probabilidade. Neste trabalho, abordamos o problema do Vizinho Próximo Aproximado onde os pontos são distribuições de probabilidade e a função de distância é a divergência de Kullback-Leibler (KL). Mostramos como acelerar as estruturas de dados existentes, como a Bregman Ball Tree, em teoria, colocando a divergência KL como um produto interno. No lado prático, investigamos o uso de duas técnicas de indexação muito populares: Índice Invertido e Locality Sensitive Hashing. Os experimentos realizados em 6 conjuntos de dados do mundo real mostraram que o Índice Invertido é melhor do que LSH e Bregman Ball Tree, em termos de consultas por segundo e precisão. / [en] In a number of applications, data points can be represented as probability distributions. For instance, documents can be represented as topic models, images can be represented as histograms and also music can be represented as a probability distribution. In this work, we address the problem of the Approximate Nearest Neighbor where the points are probability distributions and the distance function is the Kullback-Leibler (KL) divergence. We show how to accelerate existing data structures such as the Bregman Ball Tree, by posing the KL divergence as an inner product embedding. On the practical side we investigated the use of two, very popular, indexing techniques: Inverted Index and Locality Sensitive Hashing. Experiments performed on 6 real world data-sets showed the Inverted Index performs better than LSH and Bregman Ball Tree, in terms of queries per second and precision.

Page generated in 0.0388 seconds