• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Necessary and sufficient conditions for deadlock in a manufacturing system

Deering, Paul E. January 2000 (has links)
No description available.
2

Qualificações de restrições em otimização não linear com tempo contínuo / Constraints qualifications in nonlinear optimization with continuous time

Monte, Moisés Rodrigues Cirilo do 09 March 2018 (has links)
Submitted by Moisés Rodrigues Cirilo do Monte (moisesrcm@hotmail.com) on 2018-03-16T22:02:40Z No. of bitstreams: 1 Tese_Moises.pdf: 754268 bytes, checksum: e5d5247fc1d88dad53af04230ccf74dd (MD5) / Approved for entry into archive by Elza Mitiko Sato null (elzasato@ibilce.unesp.br) on 2018-03-20T17:08:48Z (GMT) No. of bitstreams: 1 monte_mrc_dr_sjrp.pdf: 754268 bytes, checksum: e5d5247fc1d88dad53af04230ccf74dd (MD5) / Made available in DSpace on 2018-03-20T17:08:48Z (GMT). No. of bitstreams: 1 monte_mrc_dr_sjrp.pdf: 754268 bytes, checksum: e5d5247fc1d88dad53af04230ccf74dd (MD5) Previous issue date: 2018-03-09 / O problema de otimização com tempo contínuo consiste em maximizar um funcional integral, sujeito a restrições de igualdade e desigualdade, onde as funções envolvidas pertencem a um espaço de Banach e variam num certo intervalo de tempo. Os resultados obtidos fornecem condições necessárias para que uma determinada função seja solução do problema. Qualificações de restrições são estabelecidas a m de se obter tais condições necessárias de otimalidade. Para problemas com restrições de desigualdade apenas, faz-se uso de um teorema de alternativa generalizado para se obter condições tipo Karush-Kuhn-Tucker. Para tratar problemas com restrições de igualdade e desigualdade, teoremas da função implícita uniforme e da aplicação inversa uniforme são necessários. / The continuous-time nonlinear programming problem consists in maximizing an integral functional, subject to equality and inequality constraints, where the involved functions belong to a Banach Space and vary over a certain period of time. The obtained results provide the necessary conditions for a given function to solve the problem. Constraints quali cation are established in order to achieve such necessary optimality conditions. For problems with inequality constraints only, a generalized alternative theorem is used to obtain Karush-Kuhn-Tucker-type conditions. To address problems with equality and inequality constraints, uniform implicit function and uniform inverse mapping theorems are necessary.
3

Optimization and Flow-Invariance via High Order Tangent Cones

Constantin, Elena January 2005 (has links)
No description available.
4

Advancing Optimal Control Theory Using Trigonometry For Solving Complex Aerospace Problems

Kshitij Mall (5930024) 17 January 2019 (has links)
<div>Optimal control theory (OCT) exists since the 1950s. However, with the advent of modern computers, the design community delegated the task of solving the optimal control problems (OCPs) largely to computationally intensive direct methods instead of methods that use OCT. Some recent work showed that solvers using OCT could leverage parallel computing resources for faster execution. The need for near real-time, high quality solutions for OCPs has therefore renewed interest in OCT in the design community. However, certain challenges still exist that prohibits its use for solving complex practical aerospace problems, such as landing human-class payloads safely on Mars.</div><div><br></div><div>In order to advance OCT, this thesis introduces Epsilon-Trig regularization method to simply and efficiently solve bang-bang and singular control problems. The Epsilon-Trig method resolves the issues pertaining to the traditional smoothing regularization method. Some benchmark problems from the literature including the Van Der Pol oscillator, the boat problem, and the Goddard rocket problem verified and validated the Epsilon-Trig regularization method using GPOPS-II.</div><div><br></div><div>This study also presents and develops the usage of trigonometry for incorporating control bounds and mixed state-control constraints into OCPs and terms it as Trigonometrization. Results from literature and GPOPS-II verified and validated the Trigonometrization technique using certain benchmark OCPs. Unlike traditional OCT, Trigonometrization converts the constrained OCP into a two-point boundary value problem rather than a multi-point boundary value problem, significantly reducing the computational effort required to formulate and solve it. This work uses Trigonometrization to solve some complex aerospace problems including prompt global strike, noise-minimization for general aviation, shuttle re-entry problem, and the g-load constraint problem for an impactor. Future work for this thesis includes the development of the Trigonometrization technique for OCPs with pure state constraints.</div>
5

Bydraes tot die oplossing van die veralgemeende knapsakprobleem

Venter, Geertien 06 February 2013 (has links)
Text in Afikaans / In this thesis contributions to the solution of the generalised knapsack problem are given and discussed. Attention is given to problems with functions that are calculable but not necessarily in a closed form. Algorithms and test problems can be used for problems with closed-form functions as well. The focus is on the development of good heuristics and not on exact algorithms. Heuristics must be investigated and good test problems must be designed. A measure of convexity for convex functions is developed and adapted for concave functions. A test problem generator makes use of this measure of convexity to create challenging test problems for the concave, convex and mixed knapsack problems. Four easy-to-interpret characteristics of an S-function are used to create test problems for the S-shaped as well as the generalised knapsack problem. The in uence of the size of the problem and the funding ratio on the speed and the accuracy of the algorithms are investigated. When applicable, the in uence of the interval length ratio and the ratio of concave functions to the total number of functions is also investigated. The Karush-Kuhn-Tucker conditions play an important role in the development of the algorithms. Suf- cient conditions for optimality for the convex knapsack problem with xed interval lengths is given and proved. For the general convex knapsack problem, the key theorem, which contains the stronger necessary conditions, is given and proved. This proof is so powerful that it can be used to proof the adapted key theorems for the mixed, S-shaped and the generalised knapsack problems as well. The exact search-lambda algorithm is developed for the concave knapsack problem with functions that are not in a closed form. This algorithm is used in the algorithms to solve the mixed and S-shaped knapsack problems. The exact one-step algorithm is developed for the convex knapsack problem with xed interval length. This algorithm is O(n). The general convex knapsack problem is solved by using the pivot algorithm which is O(n2). Optimality cannot be proven but in all cases the optimal solution was found and for all practical reasons this problem will be considered as being concluded. A good heuristic is developed for the mixed knapsack problem. Further research can be done on this heuristic as well as on the S-shaped and generalised knapsack problems. / Mathematical Sciences / D. Phil. (Operasionele Navorsing)
6

Bydraes tot die oplossing van die veralgemeende knapsakprobleem

Venter, Geertien 06 February 2013 (has links)
Text in Afikaans / In this thesis contributions to the solution of the generalised knapsack problem are given and discussed. Attention is given to problems with functions that are calculable but not necessarily in a closed form. Algorithms and test problems can be used for problems with closed-form functions as well. The focus is on the development of good heuristics and not on exact algorithms. Heuristics must be investigated and good test problems must be designed. A measure of convexity for convex functions is developed and adapted for concave functions. A test problem generator makes use of this measure of convexity to create challenging test problems for the concave, convex and mixed knapsack problems. Four easy-to-interpret characteristics of an S-function are used to create test problems for the S-shaped as well as the generalised knapsack problem. The in uence of the size of the problem and the funding ratio on the speed and the accuracy of the algorithms are investigated. When applicable, the in uence of the interval length ratio and the ratio of concave functions to the total number of functions is also investigated. The Karush-Kuhn-Tucker conditions play an important role in the development of the algorithms. Suf- cient conditions for optimality for the convex knapsack problem with xed interval lengths is given and proved. For the general convex knapsack problem, the key theorem, which contains the stronger necessary conditions, is given and proved. This proof is so powerful that it can be used to proof the adapted key theorems for the mixed, S-shaped and the generalised knapsack problems as well. The exact search-lambda algorithm is developed for the concave knapsack problem with functions that are not in a closed form. This algorithm is used in the algorithms to solve the mixed and S-shaped knapsack problems. The exact one-step algorithm is developed for the convex knapsack problem with xed interval length. This algorithm is O(n). The general convex knapsack problem is solved by using the pivot algorithm which is O(n2). Optimality cannot be proven but in all cases the optimal solution was found and for all practical reasons this problem will be considered as being concluded. A good heuristic is developed for the mixed knapsack problem. Further research can be done on this heuristic as well as on the S-shaped and generalised knapsack problems. / Mathematical Sciences / D. Phil. (Operasionele Navorsing)
7

Necessary and Sufficient Conditions on State Transformations That Preserve the Causal Structure of LTI Dynamical Networks

Leung, Chi Ho 01 May 2019 (has links)
Linear time-invariant (LTI) dynamic networks are described by their dynamical structure function, and generally, they have many possible state space realizations. This work characterizes the necessary and sufficient conditions on a state transformation that preserves the dynamical structure function, thereby generating the entire set of realizations of a given order for a specific dynamic network.
8

Necessary and Sufficient Conditions on State Transformations That Preserve the Causal Structure of LTI Dynamical Networks

Leung, Chi Ho 01 May 2019 (has links)
Linear time-invariant (LTI) dynamic networks are described by their dynamical structure function, and generally, they have many possible state space realizations. This work characterizes the necessary and sufficient conditions on a state transformation that preserves the dynamical structure function, thereby generating the entire set of realizations of a given order for a specific dynamic network.
9

Necessary and Sufficient Conditions on State Transformations That Preserve the Causal Structure of LTI Dynamical Networks

Leung, Chi Ho 01 May 2019 (has links)
Linear time-invariant (LTI) dynamic networks are described by their dynamical structure function, and generally, they have many possible state space realizations. This work characterizes the necessary and sufficient conditions on a state transformation that preserves the dynamical structure function, thereby generating the entire set of realizations of a given order for a specific dynamic network.
10

El rol de los CCTT como intermediarios de innovación: un análisis mutidimensional.

Del Campo Asenjo, Cristina 18 December 2023 (has links)
[ES] Los centros tecnológicos (en adelante, CCTT) son uno de los agentes clave de los sistemas de innovación (en adelante, SI) y actúan como pieza fundamental para fomentar y apoyar la innovación empresarial a través de la tecnología. El objetivo principal de esta tesis ha sido el estudio del rol de los CCTT en diferentes contextos identificando, a través de varias técnicas de análisis cuantitativas y cualitativas, su papel como intermediarios de innovación en los SI, así como los factores y variables clave para su competitividad. Para ello, en la primera parte de esta tesis se ha investigado sobre los SI, con el objetivo de analizar el entorno en el que operan los CCTT, aplicando tanto el método comparativo a través del estudio del caso de varios SI de referencia a nivel internacional, como la metodología del Análisis de las Condiciones Necesarias para identificar los factores críticos de mayor incidencia en la innovación y la competitividad de un territorio. La segunda parte de la tesis se ha dedicado a la investigación sobre los intermediarios de la innovación, analizando de forma particular el rol de los CCTT mediante la aplicación de la metodología del Análisis Cualitativo de Datos a la revisión bibliométrica de las publicaciones sobre CCTT. Por último, se ha aplicado la metodología del Proceso de Análisis Jerárquico para identificar y priorizar los elementos que inciden en la eficiencia y la competitividad de un CT. Con todo ello, se establecen conclusiones de utilidad tanto para la mejora de la gestión de los CCTT, como para el establecimiento de políticas de innovación que tengan como resultado una mayor eficiencia de los propios Centros, así como un incremento de la competitividad del territorio. / [CA] Els Centres Tecnològics (d'ara en avant, CCTT) són un dels agents clau dels Sistemes d'Innovació (d'ara en avant, SI) i actuen com a peça funda per a fomentar i donar suport a la innovació empresarial a través de la tecnologia. L'objectiu principal d'esta tesi ha sigut l'estudi del rol dels CCTT en diferents contextos identificant, a través de diverses tècniques d'anàlisis quantitatives i qualitatives, el seu paper com a intermediaris en els SI, així com els factors i variables clau per a la seua competitivitat. Per a això, en la primera part d'esta tesi s'ha investigat sobre els SI, amb l'objectiu d'analitzar l'entorn en què operen els CCTT, aplicant tant el mètode comparatiu a través de l'estudi del cas de diversos SI de referència a nivell internacional, com la metodologia de l'Anàlisi de les Condicions Necessàries per a identificar els factors crítics de major incidència en la innovació i la competitivitat d'un territori. La segona part de la tesi s'ha dedicat a la investigació sobre els intermediaris de la innovació, analitzant de forma particular el rol dels CCTT per mitjà de l'aplicació de la metodologia de l'Anàlisi Qualitativa de Dades a la revisió bibliométrica de les publicacions sobre CCTT. Finalment, s'ha aplicat la metodologia del Procés d'Anàlisi Jeràrquica per a identificar i prioritzar els elements que incidixen en l'eficiència i la competitivitat d'un CT. Amb tot això, s'establixen conclusions d'utilitat tant per a la millora de la gestió dels CCTT, com per a l'establiment de polítiques d'innovació que tinguen com resultat una major eficiència dels propis Centres, així com un increment de la competitivitat del territori. / [EN] Technology Centers (hereinafter, TTCC) are one of the key agents of Innovation Systems (hereinafter, IS) and act as a fundamental piece to promote and support business innovation through technology. The main objective of this thesis has been to study the role of TTCC in different contexts by identifying, through various quantitative and qualitative analysis techniques, their role as intermediaries in IS, as well as the key factors and variables for their competitiveness. To this end, the first part of this thesis has investigated the IS, with the aim of analyzing the environment in which the TTCC operate, applying both the comparative method through the case study of several international reference IS, and the methodology of the Necessary Conditions Analysis to identify the critical factors of greater impact on the innovation and competitiveness of a territory. The second part of the thesis was devoted to research on innovation intermediaries, analyzing in particular the role of the TTCC by applying the Qualitative Data Analysis methodology to the bibliometric review of publications on TTCC. Finally, the Hierarchical Analysis Process methodology has been applied to identify and prioritize the elements that affect the efficiency and competitiveness of a TC. With all this, useful conclusions are drawn both for the improvement of the management of the TTCC and for the establishment of innovation policies that will result in greater efficiency of the centers themselves, as well as an increase in the competitiveness of the territory. / Del Campo Asenjo, C. (2023). El rol de los CCTT como intermediarios de innovación: un análisis mutidimensional [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/201137

Page generated in 0.0853 seconds