1 |
Investigating the Role of Shroom3 in Kidney DevelopmentHunjan, Ashmeet January 2021 (has links)
Nephrons develop from a specialized group of mesenchyme cells known as the nephron progenitors. Nephron progenitors can very dynamic as they can self-renew, migrate, and change their cell morphology. These alterations are essential for orientating and organizing select cells for progression through various stages of nephrogenesis. However, the underlying mechanisms that drive these dynamic morphological changes are not fully understood. Shroom3 is an actin-binding protein that regulates cell shape changes by modulating the actin cytoskeleton. In mice and humans, mutations in Shroom3 are associated with poor nephron function and chronic kidney disease. Despite these findings, the underlying mechanisms of Shroom3 function and how genetic mutations contribute to abnormal nephron formation are unclear. Here, we investigated functional roles for Shroom3 in the nephron progenitor population by analyzing E13.5 and E18.5 Wildtype and Shroom3 deficient mice (termed Shroom3-/-). First, using in-situ hybridization (ISH) and immunofluorescence (IF), we confirm Shroom3 expression in select nephron progenitors. Next, we demonstrated abnormal cell shape and abnormal nephron progenitor cell clustering using H&E staining and Pax2 immunofluorescence. We showed a reduction in nephron progenitor cell numbers and decreased cell length in E13.5 Shroom3-/- kidneys. Using markers of cell orientation, we discovered altered cell orientation in some but not all nephron progenitor cells. While analyzing the cell cytoskeleton, we also demonstrated the abnormal distribution of F-actin in Shroom-/- nephron progenitors. Lastly, immunofluorescence and transmission electron microscopy analysis of Shroom3-/- nephron progenitors confirmed the abnormal shape and reduced filopodia-like thin actin-based membrane protrusions. Our findings conclude that Shroom3 is essential for maintaining and regulating nephron progenitor cell morphology. Taken together, these findings could help explain why Shroom3 mutations are highly associated with kidney disease. / Thesis / Master of Science in Medical Sciences (MSMS)
|
2 |
Genetic and molecular mechanisms regulating mammalian nephron endowmentPerl, Alison 23 August 2022 (has links)
No description available.
|
3 |
Small molecule TCS21311 can replace BMP7 and facilitate cell proliferation in in vitro expansion culture of nephron progenitor cells / 低分子化合物TCS21311はネフロン前駆細胞のin vitro拡大培養においてBMP7を代替し細胞増殖を促進するTsujimoto, Hiraku 27 July 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第22692号 / 医博第4636号 / 新制||医||1045(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 柳田 素子, 教授 斎藤 通紀, 教授 川口 義弥 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
4 |
In vitro nephrogenesis from human pluripotent stem cellsHariharan, Krithika 25 May 2018 (has links)
Die Homöostase wird maßgeblich durch die Niere, bestehend aus Millionen funktioneller Untereinheiten, den Nephronen, aufrechtherhalten. Chronisch geschädigte Nephrone führen zur Entwicklung einer terminalen Nierenerkrankung (TNE). Die Erzeugung renaler Zellen aus humanen pluripotenten Stammzellen (hPSCs) stellt eine vielversprechende Strategie zur regenerativen Therapie und Behandlung von TNE dar. In der vorliegenden Arbeit wurde ein Protokoll zur Differenzierung von renalen Vorläufern (RV) aus hPSCs entwickelt, welches nephronale Zelltypen und Strukturen in vitro und ex vivo erzeugte. Eine selektierte Kombination von Faktoren wurde in diesem 8-Tage-Protokoll genutzt, um die schrittweise Differenzierung der hPSCs zu lenken, indem die embryonale Organogenese der Niere abgebildet wurde. Am Tag 6 der Differenzierung konnten SIX2+/CITED1+ Zellen des metanephrischen Mesenchyms und HOXB7+/GRHL2+ Zellen, welche auf Vorläufer der Ureterknospe hindeuten, nachgewiesen werden. Diese entwickelten sich am Tag 8 weiter zu LGR5+/JAG1+/WT1+ renalen Vesikelzellen. Weiterführende Kultivierung in drei verschiedenen induktiven Medien führte zu WT1+/PODXL+/SYNPO+ Podozytenvorläufern, PDGFRß+/DESMIN+/αSMA+ Mesangialzellen und epithelialen Zellen des proximalen und distalen Tubulus sowie des Sammelrohrs. Außerdem bildeten die Tag-8-Vorläuferzellen spontan 3D renale Organoide aus. Die RV induzierten tubuläre Strukturen an einer Luft-Flüssigkeits-Grenzfläche und integrierten sich in embryonale Nierenaggregate. Zusammenfassend konnte demnach ein Protokoll entwickelt werden, welches entstehenden Nephronen ähnliche RV generierte, die innerhalb von 14 Tagen in spezialisierte nephronale Zelltypen differenzierten. Diese einfache Methode, um renale Zellen aus einem gemeinsamen Vorläuferpool in einer 2D -Kultur zu erzeugen, schafft die Grundlage für eine Produktion im größeren Maßstab, sowie für Modellsysteme in toxikologischen Untersuchungen oder Zelltherapien. / Kidneys are the central organ for homeostasis for our body systems and composed of around a million functional units, the nephrons. Chronically damaged nephrons deteriorate progressively towards end stage renal disease (ESRD), owing to the limited regenerative capacity of adult mammalian kidneys. The generation of renal cells from human pluripotent stem cells (hPSCs) is a promising strategy to develop regenerative therapies for ESRD. In this study, we established a protocol to differentiate hPSCs to renal progenitors (RP), capable of producing nephronal cell types and structures in vitro and ex vivo. An effective combination of factors obtained after intensive screening, was used to create an 8-day-protocol that steered hPSCs to the renal lineage by a step-wise process outlining the embryonic milestones in kidney organogenesis. Six days after growth factor treatment, a mixture of SIX2+/CITED1+ cells representing metanephric mesenchyme and an HOXB7+/GRHL2+ population indicative of ureteric bud progenitors was obtained that developed into LGR5+/JAG1+/WT1+ renal vesicle cells by the day 8. Prolonged cultivation of these day 8 cells in three inductive media resulted in generation of WT1+/PODXL+/SYNPO+ podocyte-precursors, PDGFRß+/DESMIN+/αSMA+-mesangial cells and fractions of proximal, distal and collecting duct tubular epithelial cells in vitro. Moreover, day 8 cells differentiate spontaneously into renal organoids in culture. The hPSC-derived RP gave rise to tubular structures upon culture as a pellet in air-liquid interface and integrated into embryonic kidney re-aggregations. Thus, we demonstrate that our protocol generates RP reminiscent of nascent nephrons, which can be coaxed into specialized nephronal cell types in vitro after 14 days from hPSCs. This simple and rapid method to produce renal cells from a common precursor pool in 2D culture provides the basis for scaled-up production of tailored renal cell types, applicable for drug testing or cell therapies.
|
Page generated in 0.0722 seconds