Spelling suggestions: "subject:"networkbased"" "subject:"network.based""
41 |
Algorithms for discovering disease genes by integrating 'omics dataErten, Mehmet Sinan 07 March 2013 (has links)
No description available.
|
42 |
Solving the 3-Satisfiability Problem Using Network-Based BiocomputationZhu, Jingyuan, Salhotra, Aseem, Meinecke, Christoph Robert, Surendiran, Pradheebha, Lyttleton, Roman, Reuter, Danny, Kugler, Hillel, Diez, Stefan, Månsson, Alf, Linke, Heiner, Korten, Till 19 January 2024 (has links)
The 3-satisfiability Problem (3-SAT) is a demanding combinatorial problem that is of central importance among the nondeterministic polynomial (NP) complete problems, with applications in circuit design, artificial intelligence, and logistics. Even with optimized algorithms, the solution space that needs to be explored grows exponentially with the increasing size of 3-SAT instances. Thus, large 3-SAT instances require excessive amounts of energy to solve with serial electronic computers. Network-based biocomputation (NBC) is a parallel computation approach with drastically reduced energy consumption. NBC uses biomolecular motors to propel cytoskeletal filaments through nanofabricated networks that encode mathematical problems. By stochastically exploring possible paths through the networks, the cytoskeletal filaments find possible solutions. However, to date, no NBC algorithm for 3-SAT has been available. Herein, an algorithm that converts 3-SAT into an NBC-compatible network format is reported and four small 3-SAT instances (with up to three variables and five clauses) using the actin–myosin biomolecular motor system are experimentally solved. Because practical polynomial conversions to 3-SAT exist for many important NP complete problems, the result opens the door to enable NBC to solve small instances of a wide range of problems.
|
43 |
TENA Performance in a Telemetry Network SystemSaylor, Kase J., Wood, Paul B., Malatesta, William A., Abbott, Ben A. 10 1900 (has links)
ITC/USA 2009 Conference Proceedings / The Forty-Fifth Annual International Telemetering Conference and Technical Exhibition / October 26-29, 2009 / Riviera Hotel & Convention Center, Las Vegas, Nevada / The integrated Network-Enhanced Telemetry (iNET) project conducted an assessment to determine how the Test and Training Enabling Architecture (TENA) would integrate into an iNET Telemetry Network System (TmNS), particularly across constrained environments on a resource constrained platform. Some of the key elements investigated were quality of service measures (throughput, latency, and reliability) in the face of projected characteristics of iNET Data Acquisition Unit (DAU) devices including size, weight, and power (SWAP), and processing capacity such as memory size and processor speed. This paper includes recommendations for both the iNET and TENA projects.
|
44 |
A one-class NIDS for SDN-based SCADA systems / Um NIDS baseado em OCC para sistemas SCADA baseados em SDNSilva, Eduardo Germano da January 2007 (has links)
Sistemas elétricos possuem grande influência no desenvolvimento econômico mundial. Dada a importância da energia elétrica para nossa sociedade, os sistemas elétricos frequentemente são alvos de intrusões pela rede causadas pelas mais diversas motivações. Para minimizar ou até mesmo mitigar os efeitos de intrusões pela rede, estão sendo propostos mecanismos que aumentam o nível de segurança dos sistemas elétricos, como novos protocolos de comunicação e normas de padronização. Além disso, os sistemas elétricos estão passando por um intenso processo de modernização, tornando-os altamente dependentes de sistemas de rede responsáveis por monitorar e gerenciar componentes elétricos. Estes, então denominados Smart Grids, compreendem subsistemas de geração, transmissão, e distribuição elétrica, que são monitorados e gerenciados por sistemas de controle e aquisição de dados (SCADA). Nesta dissertação de mestrado, investigamos e discutimos a aplicabilidade e os benefícios da adoção de Redes Definidas por Software (SDN) para auxiliar o desenvolvimento da próxima geração de sistemas SCADA. Propomos também um sistema de detecção de intrusões (IDS) que utiliza técnicas específicas de classificação de tráfego e se beneficia de características das redes SCADA e do paradigma SDN/OpenFlow. Nossa proposta utiliza SDN para coletar periodicamente estatísticas de rede dos equipamentos SCADA, que são posteriormente processados por algoritmos de classificação baseados em exemplares de uma única classe (OCC). Dado que informações sobre ataques direcionados à sistemas SCADA são escassos e pouco divulgados publicamente por seus mantenedores, a principal vantagem ao utilizar algoritmos OCC é de que estes não dependem de assinaturas de ataques para detectar possíveis tráfegos maliciosos. Como prova de conceito, desenvolvemos um protótipo de nossa proposta. Por fim, em nossa avaliação experimental, observamos a performance e a acurácia de nosso protótipo utilizando dois tipos de algoritmos OCC, e considerando eventos anômalos na rede SCADA, como um ataque de negação de serviço (DoS), e a falha de diversos dispositivos de campo. / Power grids have great influence on the development of the world economy. Given the importance of the electrical energy to our society, power grids are often target of network intrusion motivated by several causes. To minimize or even to mitigate the aftereffects of network intrusions, more secure protocols and standardization norms to enhance the security of power grids have been proposed. In addition, power grids are undergoing an intense process of modernization, and becoming highly dependent on networked systems used to monitor and manage power components. These so-called Smart Grids comprise energy generation, transmission, and distribution subsystems, which are monitored and managed by Supervisory Control and Data Acquisition (SCADA) systems. In this Masters dissertation, we investigate and discuss the applicability and benefits of using Software-Defined Networking (SDN) to assist in the deployment of next generation SCADA systems. We also propose an Intrusion Detection System (IDS) that relies on specific techniques of traffic classification and takes advantage of the characteristics of SCADA networks and of the adoption of SDN/OpenFlow. Our proposal relies on SDN to periodically gather statistics from network devices, which are then processed by One- Class Classification (OCC) algorithms. Given that attack traces in SCADA networks are scarce and not publicly disclosed by utility companies, the main advantage of using OCC algorithms is that they do not depend on known attack signatures to detect possible malicious traffic. As a proof-of-concept, we developed a prototype of our proposal. Finally, in our experimental evaluation, we observed the performance and accuracy of our prototype using two OCC-based Machine Learning (ML) algorithms, and considering anomalous events in the SCADA network, such as a Denial-of-Service (DoS), and the failure of several SCADA field devices.
|
45 |
Detecting and preventing the electronic transmission of illicit imagesIbrahim, Amin Abdurahman 01 April 2009 (has links)
The sexual exploitation of children remains a very serious problem and is rapidly increasing globally through the use of the Internet. This work focuses on the current methods employed by criminals to generate and distribute child pornography, the methods used by law enforcement agencies to deter them, and the drawbacks of currently used methods, as well as the surrounding legal and privacy issues. A proven method to detect the transmission of illicit images at the network layer is presented within this paper. With this research, it is now possible to actively filter illicit pornographic images as they are transmitted over the network layer in real-time. It is shown that a Stochastic Learning Weak Estimator learning algorithm and a Maximum Likelihood Estimator learning algorithm can be applied against Linear Classifiers to identify and filter illicit pornographic images. In this thesis, these two learning algorithms were combined with algorithms such as the Non-negative Vector Similarity Coefficient-based Distance algorithm, Euclidian Distance, and Weighted Euclidian Distance. Based upon this research, a prototype was developed using the abovementioned system, capable of performing classification on both compressed and uncompressed images. Experimental results showed that classification accuracies and the overhead of network-based approaches did have a significant effect on routing devices. All images used in our experiments were legal. No actual child pornography images were ever collected, seen, sought, or used.
|
46 |
Using Observers for Model Based Data Collection in Distributed Tactical OperationsThorstensson, Mirko January 2008 (has links)
<p>Modern information technology increases the use of computers in training systems as well as in command-and-control systems in military services and public-safety organizations. This computerization combined with new threats present a challenging complexity. Situational awareness in evolving distributed operations and follow-up in training systems depends on humans in the field reporting observations of events. The use of this observer-reported information can be largely improved by implementation of models supporting both reporting and computer representation of objects and phenomena in operations.</p><p>This thesis characterises and describes observer model-based data collection in distributed tactical operations, where multiple, dispersed units work to achieve common goals. Reconstruction and exploration of multimedia representations of operations is becoming an established means for supporting taskforce training. We explore how modelling of operational processes and entities can support observer data collection and increase information content in mission histories. We use realistic exercises for testing developed models, methods and tools for observer data collection and transfer results to live operations.</p><p>The main contribution of this thesis is the systematic description of the model-based approach to using observers for data collection. Methodological aspects in using humans to collect data to be used in information systems, and also modelling aspects for phenomena occurring in emergency response and communication areas contribute to the body of research. We describe a general methodology for using human observers to collect adequate data for use in information systems. In addition, we describe methods and tools to collect data on the chain of medical attendance in emergency response exercises, and on command-and-control processes in several domains.</p>
|
47 |
Demo on Network-based QoE measurement for Video streaming servicesKnoll, Thomas Martin, Eckert, Marcus 12 November 2015 (has links) (PDF)
Progressive download video services, such as YouTube, are responsible for a major part of the transmitted data volume in the Internet and it is expected, that they also will strongly affect mobile networks. Streaming video quality mainly depends on the sustainable throughput achieved during transmission. In order to achieve an acceptable video quality in mobile networks (with limited capacity resources), traffic engineering mechanisms have to be applied. For that, the streaming video quality needs to be measured and monitored permanently. Therefore, the video timestamps which are encoded within the payload of the TCP segments have to be extracted. For that it is necessary to decode the video within the transported payload. Algorithms for decoding Flash Video, MP4 and WebM Video have already been implemented as a demonstration implementation in support of the network based measurement contribution to SG12 by Chemnitz University for TCP encoded progressive download Internet services. In the demonstration, the derived play out buffering from the monitored traffic is being output internally. A second application is then used to graphically display the estimation result. The measurement and estimation is solely done within a measurement point of an operator network without access to the client’s end device.
|
48 |
Decentralized Network Based Mobility Management: Framework, System Design and Evaluation / Decentralized Network Based Mobility Management: Framework, System Design and EvaluationNeumann, Niklas 16 June 2011 (has links)
No description available.
|
49 |
A one-class NIDS for SDN-based SCADA systems / Um NIDS baseado em OCC para sistemas SCADA baseados em SDNSilva, Eduardo Germano da January 2007 (has links)
Sistemas elétricos possuem grande influência no desenvolvimento econômico mundial. Dada a importância da energia elétrica para nossa sociedade, os sistemas elétricos frequentemente são alvos de intrusões pela rede causadas pelas mais diversas motivações. Para minimizar ou até mesmo mitigar os efeitos de intrusões pela rede, estão sendo propostos mecanismos que aumentam o nível de segurança dos sistemas elétricos, como novos protocolos de comunicação e normas de padronização. Além disso, os sistemas elétricos estão passando por um intenso processo de modernização, tornando-os altamente dependentes de sistemas de rede responsáveis por monitorar e gerenciar componentes elétricos. Estes, então denominados Smart Grids, compreendem subsistemas de geração, transmissão, e distribuição elétrica, que são monitorados e gerenciados por sistemas de controle e aquisição de dados (SCADA). Nesta dissertação de mestrado, investigamos e discutimos a aplicabilidade e os benefícios da adoção de Redes Definidas por Software (SDN) para auxiliar o desenvolvimento da próxima geração de sistemas SCADA. Propomos também um sistema de detecção de intrusões (IDS) que utiliza técnicas específicas de classificação de tráfego e se beneficia de características das redes SCADA e do paradigma SDN/OpenFlow. Nossa proposta utiliza SDN para coletar periodicamente estatísticas de rede dos equipamentos SCADA, que são posteriormente processados por algoritmos de classificação baseados em exemplares de uma única classe (OCC). Dado que informações sobre ataques direcionados à sistemas SCADA são escassos e pouco divulgados publicamente por seus mantenedores, a principal vantagem ao utilizar algoritmos OCC é de que estes não dependem de assinaturas de ataques para detectar possíveis tráfegos maliciosos. Como prova de conceito, desenvolvemos um protótipo de nossa proposta. Por fim, em nossa avaliação experimental, observamos a performance e a acurácia de nosso protótipo utilizando dois tipos de algoritmos OCC, e considerando eventos anômalos na rede SCADA, como um ataque de negação de serviço (DoS), e a falha de diversos dispositivos de campo. / Power grids have great influence on the development of the world economy. Given the importance of the electrical energy to our society, power grids are often target of network intrusion motivated by several causes. To minimize or even to mitigate the aftereffects of network intrusions, more secure protocols and standardization norms to enhance the security of power grids have been proposed. In addition, power grids are undergoing an intense process of modernization, and becoming highly dependent on networked systems used to monitor and manage power components. These so-called Smart Grids comprise energy generation, transmission, and distribution subsystems, which are monitored and managed by Supervisory Control and Data Acquisition (SCADA) systems. In this Masters dissertation, we investigate and discuss the applicability and benefits of using Software-Defined Networking (SDN) to assist in the deployment of next generation SCADA systems. We also propose an Intrusion Detection System (IDS) that relies on specific techniques of traffic classification and takes advantage of the characteristics of SCADA networks and of the adoption of SDN/OpenFlow. Our proposal relies on SDN to periodically gather statistics from network devices, which are then processed by One- Class Classification (OCC) algorithms. Given that attack traces in SCADA networks are scarce and not publicly disclosed by utility companies, the main advantage of using OCC algorithms is that they do not depend on known attack signatures to detect possible malicious traffic. As a proof-of-concept, we developed a prototype of our proposal. Finally, in our experimental evaluation, we observed the performance and accuracy of our prototype using two OCC-based Machine Learning (ML) algorithms, and considering anomalous events in the SCADA network, such as a Denial-of-Service (DoS), and the failure of several SCADA field devices.
|
50 |
A one-class NIDS for SDN-based SCADA systems / Um NIDS baseado em OCC para sistemas SCADA baseados em SDNSilva, Eduardo Germano da January 2007 (has links)
Sistemas elétricos possuem grande influência no desenvolvimento econômico mundial. Dada a importância da energia elétrica para nossa sociedade, os sistemas elétricos frequentemente são alvos de intrusões pela rede causadas pelas mais diversas motivações. Para minimizar ou até mesmo mitigar os efeitos de intrusões pela rede, estão sendo propostos mecanismos que aumentam o nível de segurança dos sistemas elétricos, como novos protocolos de comunicação e normas de padronização. Além disso, os sistemas elétricos estão passando por um intenso processo de modernização, tornando-os altamente dependentes de sistemas de rede responsáveis por monitorar e gerenciar componentes elétricos. Estes, então denominados Smart Grids, compreendem subsistemas de geração, transmissão, e distribuição elétrica, que são monitorados e gerenciados por sistemas de controle e aquisição de dados (SCADA). Nesta dissertação de mestrado, investigamos e discutimos a aplicabilidade e os benefícios da adoção de Redes Definidas por Software (SDN) para auxiliar o desenvolvimento da próxima geração de sistemas SCADA. Propomos também um sistema de detecção de intrusões (IDS) que utiliza técnicas específicas de classificação de tráfego e se beneficia de características das redes SCADA e do paradigma SDN/OpenFlow. Nossa proposta utiliza SDN para coletar periodicamente estatísticas de rede dos equipamentos SCADA, que são posteriormente processados por algoritmos de classificação baseados em exemplares de uma única classe (OCC). Dado que informações sobre ataques direcionados à sistemas SCADA são escassos e pouco divulgados publicamente por seus mantenedores, a principal vantagem ao utilizar algoritmos OCC é de que estes não dependem de assinaturas de ataques para detectar possíveis tráfegos maliciosos. Como prova de conceito, desenvolvemos um protótipo de nossa proposta. Por fim, em nossa avaliação experimental, observamos a performance e a acurácia de nosso protótipo utilizando dois tipos de algoritmos OCC, e considerando eventos anômalos na rede SCADA, como um ataque de negação de serviço (DoS), e a falha de diversos dispositivos de campo. / Power grids have great influence on the development of the world economy. Given the importance of the electrical energy to our society, power grids are often target of network intrusion motivated by several causes. To minimize or even to mitigate the aftereffects of network intrusions, more secure protocols and standardization norms to enhance the security of power grids have been proposed. In addition, power grids are undergoing an intense process of modernization, and becoming highly dependent on networked systems used to monitor and manage power components. These so-called Smart Grids comprise energy generation, transmission, and distribution subsystems, which are monitored and managed by Supervisory Control and Data Acquisition (SCADA) systems. In this Masters dissertation, we investigate and discuss the applicability and benefits of using Software-Defined Networking (SDN) to assist in the deployment of next generation SCADA systems. We also propose an Intrusion Detection System (IDS) that relies on specific techniques of traffic classification and takes advantage of the characteristics of SCADA networks and of the adoption of SDN/OpenFlow. Our proposal relies on SDN to periodically gather statistics from network devices, which are then processed by One- Class Classification (OCC) algorithms. Given that attack traces in SCADA networks are scarce and not publicly disclosed by utility companies, the main advantage of using OCC algorithms is that they do not depend on known attack signatures to detect possible malicious traffic. As a proof-of-concept, we developed a prototype of our proposal. Finally, in our experimental evaluation, we observed the performance and accuracy of our prototype using two OCC-based Machine Learning (ML) algorithms, and considering anomalous events in the SCADA network, such as a Denial-of-Service (DoS), and the failure of several SCADA field devices.
|
Page generated in 0.0516 seconds