Spelling suggestions: "subject:"neuen""
31 |
A Tectonic Theory of Moral Responsibility: How a Concern for Patiency can Make Moral Responsibility Practices More FairJurkovic, Lucas January 2016 (has links)
This thesis develops a tectonic theory of moral responsibility. The word ‘tectonic’ is used metaphorically, to bring to mind the interaction of tectonic plates in the earth’s crust. The theory of moral responsibility developed in the thesis posits that there are two aspects of persons that should be considered within moral responsibility judgments: agency and patiency. I suggest that the ways that these relate to and influence each other can be thought of as similar to the interactions between tectonic plates.
I use the term ‘agency’ in its usual sense to refer to the control component of moral responsibility judgments. A person must be an agent, i.e. have a normal degree of self-control in order to be held morally responsible for her actions. This is a vague take on agency, to be sure. However, the tectonic theory is meant to apply to any of the common conceptions of agency in the moral responsibility literature. The vagueness in my treatment of agency is thus intended to allow the tectonic theory to be pluralist in regards to various conceptions of agency on offer. Whether one subscribes to a reasons-responsiveness view of agency, or an identificationist view, the tectonic theory’s prescribed concern for patiency can function as a fairness-enhancing counterweight to the agentic considerations of either view.
The novelty of the tectonic theory derives from its use of the concept of patiency, which has been neglected in philosophical discussions of moral responsibility. Patiency refers to the features of a person and her life that she cannot control. The tectonic theory takes both agentic and patientic features of persons into account when making moral responsibility judgments. I argue that doing so can enhance the fairness of moral responsibility judgments, while for the most part avoiding the pitfalls of more conventional approaches to moral responsibility such as compatibilism and incompatibilism. To develop the tectonic theory, I draw from work in philosophy, psychology, and cognitive neuroscience.
|
32 |
Measuring Acute Effects of Aluminum Chloride Exposures on the Adult Male Rat Hippocampus Using Neuro-electrophysiology and Biochemical AssaysEthridge, Victoria Taryn 11 June 2019 (has links)
No description available.
|
33 |
Development of a miniaturized microscope for depth-scanning imaging at subcellular resolution in freely behaving animalsBagramyan, Arutyun 06 February 2021 (has links)
Le fonctionnement du cerveau humain est fascinant. En seulement quelques millisecondes, des milliards de neurones synchronisés perçoivent, traitent et redirigent les informations permettant le contrôle de notre corps, de nos sentiments et de nos pensées. Malheureusement, notre compréhension du cerveau reste limitée et de multiples questions physiologiques demeurent. Comment sont exactement reliés le fonctionnement neuronal et le comportement humain ? L’imagerie de l’activité neuronale au moyen de systèmes miniatures est l’une des voies les plus prometteuses permettant d’étudier le cerveau des animaux se déplaçant librement. Cependant, le développement de ces outils n’est pas évident et de multiples compromis techniques doivent être faits pour arriver à des systèmes suffisamment petits et légers. Les outils actuels ont donc souvent des limitations concernant leurs caractéristiques physiques et optiques. L’un des problèmes majeur est le manque d’une lentille miniature électriquement réglable et à faible consommation d’énergie permettant l’imagerie avec un balayage en profondeur. Dans cette thèse, nous proposons un nouveau type de dispositif d’imagerie miniature qui présente de multiples avantages mécaniques, électriques et optiques par rapport aux systèmes existants. Le faible poids, la petite dimension, la capacité de moduler électriquement la distance focale à l’aide d’une lentille à cristaux liquides (CL) et la capacité d’imager des structures fines sont au cœur des innovations proposées. Dans un premier temps, nous présenterons nos travaux (théoriques et expérimentaux) de conception, assemblage et optimisation de la lentille à CL accordable (TLCL, pour tunable liquid crystal lens). Deuxièmement, nous présenterons la preuve de concept macroscopique du couplage optique entre la TLCL et la lentille à gradient d’indice (GRIN, pour gradient index) en forme d’une tige. Utilisant le même système, nous démontrerons la capacité de balayage en profondeur dans le cerveau des animaux anesthésiés. Troisièmement, nous montrerons un dispositif d’imagerie (2D) miniature avec de nouvelles caractéristiques mécaniques et optiques permettant d’imager de fines structures neuronales dans des tranches de tissus cérébraux fixes. Enfin, nous présenterons le dispositif miniaturisé, avec une TLCL intégrée. Grâce à notre système, nous obtenons ≈ 100 µm d’ajustement électrique de la profondeur d’imagerie qui permet d’enregistrer l’activité de fines structures neuronales lors des différents comportements (toilettage, marche, etc.) de la souris. / The functioning of the human brain is fascinating. In only a few milliseconds, billions of finely tuned and synchronized neurons perceive, process and exit the information that drives our body, our feelings and our thoughts. Unfortunately, our understating of the brain is limited and multiple physiological questions remain. How exactly are related neural functioning and human behavior ? The imaging of the neuronal activity by means of miniaturized systems is one of the most promising avenues allowing to study the brain of the freely moving subjects. However, the development of these tools is not obvious and multiple technical trade-offs must be made to build a system that is sufficiently small and light. Therefore, the available tools have different limitations regarding their physical and optical characteristics. One of the major problems is the lack of an electrically adjustable and energy-efficient miniature lens allowing to scan in depth. In this thesis, we propose a new type of miniature imaging device that has multiple mechanical, electrical and optical advantages over existing systems. The low weight, the small size, the ability to electrically modulate the focal distance using a liquid crystal (LC) lens and the ability to image fine structures are among the proposed innovations. First, we present our work (theoretical and experimental) of design, assembling and optimization of the tunable LC lens (TLCL). Second, we present the macroscopic proof-of-concept optical coupling between the TLCL and the gradient index lens (GRIN) in the form of a rod. Using the same system, we demonstrate the depth scanning ability in the brain of anaesthetized animals. Third, we show a miniature (2D) imaging device with new mechanical and optical features allowing to image fine neural structures in fixed brain tissue slices. Finally, we present a state-of-the-art miniaturized device with an integrated TLCL. Using our system, we obtain a ≈ 100 µm electrical depth adjustment that allows to record the activity of fine neuronal structures during the various behaviours (grooming, walking, etc.) of the mouse.
|
34 |
End-to-End Neuro-Symbolic Approaches for Event RecognitionApriceno, Gianluca 30 October 2023 (has links)
Event detection is a critical challenge in many fields like video surveillance, social graph analysis, and multimedia processing. Furthermore, events are “structured” objects involv ing multiple components like the event type, the participants with their roles, and the atomic events in which it decomposes. Therefore, the recognition of an event is not only limited to recognize the type of the event and when it happened, but it involves solving a set of simple tasks. Exploiting background knowledge about events and their relations could then be beneficial for event detection. In the last years, neuro-symbolic integration has been proposed to merge the strengths and overcome the drawbacks of both symbolic and neural worlds. As a consequence, different neuro-symbolic frameworks, which com bine low-level perception of neural networks with a symbolic layer, encoding prior domain knowledge (usually defined in terms of logical rules), have been applied to solve different atemporal tasks. In this thesis, we want to investigate the application of the neuro-symbolic paradigm for event detection. This would also provide a better insight into the strengths and limitations of neuro-symbolic towards tasks involving time.
|
35 |
Développement et utilisation de la microscopie holographique numérique polychromatiqueLarivière-Loiselle, Céline 27 January 2024 (has links)
La microscopie holographique numérique (DHM) est une technique d'imagerie polyvalente prometteuse pour l'identification de biomarqueurs de maladies psychiatriques majeures. Les images obtenues par DHM sont toutefois affectées par le bruit cohérent, qui entrave entre autres la visualisation de petites ramifications nerveuses dans les tissus neuronaux. Le projet présenté dans ce mémoire tâche d'affranchir la DHM de ce défaut grâce à une approche dite polychromatique exploitant un laser à longueur d'onde modulable. Des cultures neuronales de rat et des cellules minces ont été analysées au moyen de cette approche, permettant de révéler de fins détails, tels que des dendrites et des organites. Finalement, dans l'objectif de mesurer des réponses cellulaires de façon dynamique, la méthode a été automatisée et optimisée. La stratégie proposée ici augure favorablement pour l'étude de la connectivité neuronale, et le montage peut être adapté pour des applications additionnelles de la DHM en biologie cellulaire. / Digital holographic microscopy (DHM) is a promising versatile imaging technique for the identification of biomarkers of major psychiatric illnesses. However, images obtained by DHM are affected by coherent noise, which among other things prevents from properly distinguishing nerve branches in neural tissue. The project presented in this thesis aims to remove this defect thanks to a socalled polychromatic approach using a laser with modulable wave lengths. Using this approach, neuronal cultures and thin cells were imaged, revealing fine details, such as dendrites and cell organelles. The setup was then optimized to measure dynamical cellular responses. The strategy proposed here bodes well for the study of neuronal connectivity and the setup can be adapted for additional DHM applications in cellularbiology.
|
36 |
Utilisation de la spectroscopie Raman spontanée pour la différenciation de régions du cerveau dans le cadre de la maladie de ParkinsonRousseau, Antoine 12 August 2024 (has links)
La stimulation cérébrale profonde (SCP) est un traitement proposée aux patients gravement atteints de la maladie de Parkinson pour lesquels les symptômes moteurs réduisent grandement leur qualité de vie. Ce traitement implique une chirurgie pendant laquelle une électrode doit être placée très précisément dans le mésencéphale afin d'atténuer efficacement les symptômes moteurs des patients. Les chirurgiens qui effectuent cette opération ne possèdent toutefois pas d'outil de guidage pour le positionnement de l'électrode. Afin de combler cette problématique, des technologies optiques peuvent être implantées à l'intérieur de l'électrode afin de mesurer un contraste entre certaines régions du cerveau, aidant ainsi le chirurgien à positionner correctement l'électrode. La première étape de ce projet consiste à explorer les techniques optiques qui ont le potentiel de mesurer un contraste entre certaines régions du cerveau. Dans ce projet de maitrise, la spectroscopie Raman spontanée (SRSpont) est explorée afin d'identifier les régions spectrales Raman pertinentes pour aider le guidage de l'électrode dans le cadre du traitement de SCP. Pour ce faire, des spectres Raman sont mesurés dans huit régions identifiées sur des tranches de cerveau de macaque post mortem à l'aide d'un microscope Raman. Ces spectres Raman subissent ensuite une réduction dimensionnelle par analyse en composantes principales (ACP) avant d'être classés par la méthode des voisins les plus proches (VPP). Au final, cette méthode d'analyse permet de prédire correctement 43 % du temps la région du cerveau dans laquelle un spectre Raman est mesuré. Ensuite, des différences spectrales entre certaines régions spécifiques du cerveau sont identifiées, notamment le signal Raman provenant des lipides qui permet de distinguer facilement la matière blanche et la matière grise. Un contraste entre le noyau subthalamique (STN) et la substance noire (SN) est également mesuré grâce au signal Raman à 996 cm$^{-1}$ provenant de la phénylalanine. De tels contrastes sont intéressants dans le cadre du traitement de SCP étant donné que le STN est très souvent la région dans laquelle il faut placer l'électrode et que celui-ci est principalement entouré du SN et de matière blanche. La SRSpont permet donc de mesurer un contraste intéressant entre des régions du cerveau pertinentes dans le cadre du traitement de SCP. Cette technique a donc le potentiel de fournir suffisamment d'information au chirurgien afin de faciliter le positionnement de l'électrode lors du traitement de SCP. Il serait intéressant d'implanter un système SRSpont dans des fibres optiques afin de vérifier le potentiel de cette technique dans des conditions similaires à celles rencontrées lors de la chirurgie liée au traitement de SCP.
|
37 |
Avec leurs signes, recibler nos transmissions : adolescences et pastoralesHuard-Lamarche, Ginette January 1995 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
38 |
Development of a miniaturized microscope for depth-scanning imaging at subcellular resolution in freely behaving animalsBagramyan, Arutyun 02 February 2024 (has links)
Le fonctionnement du cerveau humain est fascinant. En seulement quelques millisecondes, des milliards de neurones synchronisés perçoivent, traitent et redirigent les informations permettant le contrôle de notre corps, de nos sentiments et de nos pensées. Malheureusement, notre compréhension du cerveau reste limitée et de multiples questions physiologiques demeurent. Comment sont exactement reliés le fonctionnement neuronal et le comportement humain ? L’imagerie de l’activité neuronale au moyen de systèmes miniatures est l’une des voies les plus prometteuses permettant d’étudier le cerveau des animaux se déplaçant librement. Cependant, le développement de ces outils n’est pas évident et de multiples compromis techniques doivent être faits pour arriver à des systèmes suffisamment petits et légers. Les outils actuels ont donc souvent des limitations concernant leurs caractéristiques physiques et optiques. L’un des problèmes majeur est le manque d’une lentille miniature électriquement réglable et à faible consommation d’énergie permettant l’imagerie avec un balayage en profondeur. Dans cette thèse, nous proposons un nouveau type de dispositif d’imagerie miniature qui présente de multiples avantages mécaniques, électriques et optiques par rapport aux systèmes existants. Le faible poids, la petite dimension, la capacité de moduler électriquement la distance focale à l’aide d’une lentille à cristaux liquides (CL) et la capacité d’imager des structures fines sont au cœur des innovations proposées. Dans un premier temps, nous présenterons nos travaux (théoriques et expérimentaux) de conception, assemblage et optimisation de la lentille à CL accordable (TLCL, pour tunable liquid crystal lens). Deuxièmement, nous présenterons la preuve de concept macroscopique du couplage optique entre la TLCL et la lentille à gradient d’indice (GRIN, pour gradient index) en forme d’une tige. Utilisant le même système, nous démontrerons la capacité de balayage en profondeur dans le cerveau des animaux anesthésiés. Troisièmement, nous montrerons un dispositif d’imagerie (2D) miniature avec de nouvelles caractéristiques mécaniques et optiques permettant d’imager de fines structures neuronales dans des tranches de tissus cérébraux fixes. Enfin, nous présenterons le dispositif miniaturisé, avec une TLCL intégrée. Grâce à notre système, nous obtenons ≈ 100 µm d’ajustement électrique de la profondeur d’imagerie qui permet d’enregistrer l’activité de fines structures neuronales lors des différents comportements (toilettage, marche, etc.) de la souris. / The functioning of the human brain is fascinating. In only a few milliseconds, billions of finely tuned and synchronized neurons perceive, process and exit the information that drives our body, our feelings and our thoughts. Unfortunately, our understating of the brain is limited and multiple physiological questions remain. How exactly are related neural functioning and human behavior ? The imaging of the neuronal activity by means of miniaturized systems is one of the most promising avenues allowing to study the brain of the freely moving subjects. However, the development of these tools is not obvious and multiple technical trade-offs must be made to build a system that is sufficiently small and light. Therefore, the available tools have different limitations regarding their physical and optical characteristics. One of the major problems is the lack of an electrically adjustable and energy-efficient miniature lens allowing to scan in depth. In this thesis, we propose a new type of miniature imaging device that has multiple mechanical, electrical and optical advantages over existing systems. The low weight, the small size, the ability to electrically modulate the focal distance using a liquid crystal (LC) lens and the ability to image fine structures are among the proposed innovations. First, we present our work (theoretical and experimental) of design, assembling and optimization of the tunable LC lens (TLCL). Second, we present the macroscopic proof-of-concept optical coupling between the TLCL and the gradient index lens (GRIN) in the form of a rod. Using the same system, we demonstrate the depth scanning ability in the brain of anaesthetized animals. Third, we show a miniature (2D) imaging device with new mechanical and optical features allowing to image fine neural structures in fixed brain tissue slices. Finally, we present a state-of-the-art miniaturized device with an integrated TLCL. Using our system, we obtain a ≈ 100 µm electrical depth adjustment that allows to record the activity of fine neuronal structures during the various behaviours (grooming, walking, etc.) of the mouse.
|
39 |
Apprendre de données positives et non étiquetées : application à la segmentation et la détection d'évènements calciquesLeclerc, Gabriel 02 February 2024 (has links)
Deux types de neurotransmission se produisent dans les neurones du cerveau : la transmission évoquée et la transmission spontanée. Contrairement à la transmission évoquée, le rôle de la transmission spontanée sur la plasticité synaptique - un mécanisme utilisé pour doter le cerveau de capacités d'apprentissage et de mémorisation - reste incertain. Les neurotransmissions spontanées sont localisées et se produisent aléatoirement dans les synapses des neurones. Lorsqu'un tel événement spontané se produit, ce que l'on appelle un influx synaptique miniature d'ions calcium (miniature Synaptic Ca²⁺ Transient, mSCT), des ions calcium messagers secondaires pénètrent dans la synapse, activant les voies de signalisation en aval de la plasticité synaptique. L'utilisation de l'imagerie calcique du neurone in vitro permet la visualisation spatiotemporelle de l'entrée des ions calcium. Les vidéos calciques qui en résultent permettent une étude quantitative de l'impact du mSCT sur la plasticité synaptique. Cependant, la localisation des mSCTs dans l'imagerie du calcium est difficile en raison de leur petite taille, de leur faible intensité par rapport au bruit de l'imagerie et de leur caractère aléatoire inhérent. Dans ce mémoire, nous présentons une méthode d'analyse quantitative à grande échelle des vidéos d'imagerie calcique limitant la variabilité induite par les interventions humaines pour obtenir des données probantes, dans le but de caractériser l'impact des mSCTs sur la plasticité synaptique. En nous basant sur un outil semi-automatique de détection à seuil d'intensité (Intensity Thresholded Detection, ITD), nous sommes capables de générer des données pour entraîner un réseau pleinement convolutionnel (Fully Convolutional Network, FCN) afin de détecter rapidement et automatiquement les mSCTs à partir de vidéos calciques. En utilisant les segmentations bruitées de l'ITD comme données d'entraînement, combinées à un schéma d'entraînement positif (P) et non étiqueté (Unlabeled, U), les performances du FCN surpassent ITD. Le FCN détecte des mSCTs de faible intensité non détectés auparavant par ITD et offre une segmentation supérieure à ITD. Nous avons ensuite caractérisé l'impact des paramètres PU tels que le nombre de P et le ratio P:U. Le FCN entraîné est intégré dans une routine tout-en-un pour permettre une analyse à grande échelle des mSCTs. La routine offre la détection, la segmentation, la caractérisation et la visualisation des mSCTs ainsi qu'une solution logicielle pour gérer plusieurs vidéos avec différentes métadonnées. / Two types of neurotransmission occur in brain's neurons: evoked transmission and spontaneous transmission. Unlike the former, the role of spontaneous transmission on synaptic plasticity - a mechanism used to endow the brain learning and memory abilities - remain unclear. Spontaneous neurotransmissions are localized and randomly happening in neuron's synapses. When such spontaneous events happen, so-called miniature synaptic Ca²⁺ transients(mSCT), second messenger calcium ions entered the spine, activating downstream signaling pathways of synaptic plasticity. Using calcium imaging of in vitro neuron enable spatiotemporal visualization of the entry of calcium ions. Resulting calcium videos enable quantitative study of mSCT's impact on synaptic plasticity. However, mSCT localization in calcium imaging can be challenging due to their small size, their low intensity compared with the imaging noise and their inherent randomness. In this master's thesis, we present a method for quantitative high-throughput analysis of calcium imaging videos that limits the variability induced by human interventions to obtain evidence for characterizing the impact of mSCTs on synaptic plasticity. Based on a semi-automatic intensity thresholded detection (ITD) tool, we are able to generate data to train a fully convolutional neural network (FCN) to rapidly and automaticaly detect mSCT from calcium videos. Using ITD noisy segmentations as training data combine with a positive and unlabeled (PU) training schema, we leveraged FCN performances and could even detect previously undetected low instensity mSCTs missed by ITD. The FCN also provide better segmentation than ITD. We then characterized the impact of PU parameters such as the number of P and the ratio P:U. The trained FCN is bundled in a all-in-one pipeline to permit a high-thoughtput analysis of mSCT. The pipeline offers detection, segmentation, characterization and visualization of mSCTs as well as a software solution to manage multiple videos with different metadatas.
|
40 |
Microscope 3D à très large champ de vue et à haute résolution isotropeAkitegetse, Cléophace 27 January 2024 (has links)
La connectomique est un des plus grands défis dans la compréhension et le diagnostic des maladies du cerveau. En effet, les mauvaises connexions et le mauvais fonctionnement des circuits du cerveau sont à l'origine de nombreuses maladies neurologiques. Ceci peut être causé par des défauts génétiques, un dérèglement en cours de développement ou à une dégénérescence à un stade ultérieur de la vie. Pour étudier les changements morphologiques à la base des maladies mentales et neurologiques, les technologies d'imagerie actuelles sont limitées. Du fait de la difficulté à acheminer la lumière à l'intérieur de grands volumes de tissus, les études se font bien souvent à partir d'images bidimensionnelles de coupes histologiques et résultent, dans de nombreux cas, à des informations spatiales incomplètes. Dans ce projet, nous avons adopté une stratégie qui permet d'obtenir des images 3D de grands volumes à haute résolution, et ce, sans coupe histologique. D'une part, des techniques de transparisation ont été utilisées afin de minimiser la diffusion de la lumière dans les échantillons de tissus. D'autre part, pour une imagerie plus rapide, nous avons conçu un microscope de fluorescence à feuillet lumineux, à large champ de vue et à haute résolution. Les rayons d'un faisceau laser afocal sont déviés par un axicon pour interagir entre eux et former, dans l'échantillon, une fine aiguille lumineuse qui forme un feuillet lumineux une fois balayée à très grande vitesse dans un plan. Le signal de fluorescence émanant de la section illuminée par le feuillet est collecté selon un axe perpendiculaire par une caméra scientifique CMOS. Cette stratégie a permis de surpasser les systèmes déjà existants en fournissant des images grand volume avec une résolution isotrope de l'ordre du micron. Enfin, ce nouvel outil nous a permis de faire des études précédemment impossibles et aura certainement un impact direct sur l'évaluation post-mortem et l'optimisation de traitements, la découverte de médicaments et l'identification des régions cibles pour les maladies neurodégénératives. / Connectomics is one of the biggest challenges in understanding and diagnosing brain diseases. Indeed, many neurological diseases have their origins in a bad connection or a malfunction of brain circuits. This can be caused by genetic defects, developmental dysfunction or degeneration at a later stage of life. To study the morphological changes underlying mental and neurological diseases, current imaging technologies are limited. In fact, studies are often based on two-dimensional images of histological sections and result, in many cases, in incomplete spatial information. In this project, we adopted a strategy that allows us to obtain 3D images of large volumes at high resolution, without any histological section. On the one hand, optical clearing techniques were used to minimize light scattering in tissue samples. On the other hand, for faster imaging, we have designed a fluorescence light sheet microscope with a large field of view and high resolution. The rays of an afocal laser beam are deflected by an axicon (conical prism) to interact with each other and form, in the sample, a thin needle-shaped beam which, when swept at a very high speed along an axis, forms a light sheet. The fluorescence signal from the section illuminated by the light sheet is collected along a perpendicular axis by a scientific CMOS camera. This strategy has surpassed existing systems by providing large volume images with an isotropic micronic resolution. Finally, this new tool has allowed us to make previously impossible studies and will certainly have a direct impact on postmortem evaluation and treatment optimization, drug discovery and identification of target areas for neurodegenerative diseases.
|
Page generated in 0.0551 seconds