Spelling suggestions: "subject:"neurociencias"" "subject:"neurociência""
41 |
Development of Advanced Closed-Loop Brain Electrophysiology Systems for Freely Behaving RodentsCuevas López, Aarón 17 January 2022 (has links)
[ES] La electrofisiología extracelular es una técnica ampliamente usada en investigación neurocientífica, la cual estudia el funcionamiento del cerebro mediante la medición de campos eléctricos generados por la actividad neuronal. Esto se realiza a través de electrodos implantados en el cerebro y conectados a dispositivos electrónicos para amplificación y digitalización de las señales. De los muchos modelos animales usados en experimentación, las ratas y los ratones se encuentran entre las especies más comúnmente utilizadas.
Actualmente, la experimentación electrofisiológica busca condiciones cada vez más complejas, limitadas por la tecnología de los dispositivos de adquisición. Dos aspectos son de particular interés: Realimentación de lazo cerrado y comportamiento en condiciones naturales. En esta tesis se presentan desarrollos con el objetivo de mejorar diferentes facetas de estos dos problemas.
La realimentación en lazo cerrado se refiere a todas las técnicas en las que los estímulos son producidos en respuesta a un evento generado por el animal. La latencia debe ajustarse a las escalas temporales bajo estudio. Los sistemas modernos de adquisición presentan latencias en el orden de los 10ms. Sin embargo, para responder a eventos rápidos, como pueden ser los potenciales de acción, se requieren latencias por debajo de 1ms. Además, los algoritmos para detectar los eventos o generar los estímulos pueden ser complejos, integrando varias entradas de datos en tiempo real. Integrar el desarrollo de dichos algoritmos en las herramientas de adquisición forma parte del diseño experimental.
Para estudiar comportamientos naturales, los animales deben ser capaces de moverse libremente en entornos emulando condiciones naturales. Experimentos de este tipo se ven dificultados por la naturaleza cableada de los sistemas de adquisición. Otras restricciones físicas, como el peso de los implantes o limitaciones en el consumo de energía, pueden también afectar a la duración de los experimentos, limitándola. La experimentación puede verse enriquecida cuando los datos electrofisiológicos se ven complementados con múltiples fuentes distintas. Por ejemplo, seguimiento de los animales o miscroscopía. Herramientas capaces de integrar datos independientemente de su origen abren la puerta a nuevas posibilidades.
Los avances tecnológicos presentados abordan estas limitaciones. Se han diseñado dispositivos con latencias de lazo cerrado inferiores a 200us que permiten combinar cientos de canales electrofisiológicos con otras fuentes de datos, como vídeo o seguimiento. El software de control para estos dispositivos se ha diseñado manteniendo la flexibilidad como objetivo. Se han desarrollado interfaces y estándares de naturaleza abierta para incentivar el desarrollo de herramientas compatibles entre ellas.
Para resolver los problemas de cableado se siguieron dos métodos distintos. Uno fue el desarrollo de headstages ligeros combinados con cables coaxiales ultra finos y conmutadores activos, gracias al seguimiento de animales. Este desarrollo permite reducir el esfuerzo impuesto a los animales, permitiendo espacios amplios y experimentos de larga duración, al tiempo que permite el uso de headstages con características avanzadas.
Paralelamente se desarrolló un tipo diferente de headstage, con tecnología inalámbrica. Se creó un algoritmo de compresión digital especializado capaz de reducir el ancho de banda a menos del 65% de su tamaño original, ahorrando energía. Esta reducción permite baterías más ligeras y mayores tiempos de operación. El algoritmo fue diseñado para ser capaz de ser implementado en una gran variedad de dispositivos.
Los desarrollos presentados abren la puerta a nuevas posibilidades experimentales para la neurociencia, combinando adquisición elextrofisiológica con estudios conductuales en condiciones naturales y estímulos complejos en tiempo real. / [CA] L'electrofisiologia extracel·lular és una tècnica àmpliament utilitzada en la investigació neurocientífica, la qual permet estudiar el funcionament del cervell mitjançant el mesurament de camps elèctrics generats per l'activitat neuronal. Això es realitza a través d'elèctrodes implantats al cervell, connectats a dispositius electrònics per a l'amplificació i digitalització dels senyals. Dels molts models animals utilitzats en experimentació electrofisiològica, les rates i els ratolins es troben entre les espècies més utilitzades.
Actualment, l'experimentació electrofisiològica busca condicions cada vegada més complexes, limitades per la tecnologia dels dispositius d'adquisició. Dos aspectes són d'especial interès: La realimentació de sistemes de llaç tancat i el comportament en condicions naturals. En aquesta tesi es presenten desenvolupaments amb l'objectiu de millorar diferents aspectes d'aquestos dos problemes.
La realimentació de sistemes de llaç tancat es refereix a totes aquestes tècniques on els estímuls es produeixen en resposta a un esdeveniment generat per l'animal. La latència ha d'ajustar-se a les escales temporals sota estudi. Els sistemes moderns d'adquisició presenten latències en l'ordre dels 10ms. No obstant això, per a respondre a esdeveniments ràpids, com poden ser els potencials d'acció, es requereixen latències per davall de 1ms. A més a més, els algoritmes per a detectar els esdeveniments o generar els estímuls poden ser complexos, integrant varies entrades de dades a temps real. Integrar el desenvolupament d'aquests algoritmes en les eines d'adquisició forma part del disseny dels experiments.
Per a estudiar comportaments naturals, els animals han de ser capaços de moure's lliurement en ambients emulant condicions naturals. Aquestos experiments es veuen limitats per la natura cablejada dels sistemes d'adquisició. Altres restriccions físiques, com el pes dels implants o el consum d'energia, poden també limitar la duració dels experiments. L'experimentació es pot enriquir quan les dades electrofisiològiques es complementen amb dades de múltiples fonts. Per exemple, el seguiment d'animals o microscòpia. Eines capaces d'integrar dades independentment del seu origen obrin la porta a noves possibilitats.
Els avanços tecnològics presentats tracten aquestes limitacions. S'han dissenyat dispositius amb latències de llaç tancat inferiors a 200us que permeten combinar centenars de canals electrofisiològics amb altres fonts de dades, com vídeo o seguiment. El software de control per a aquests dispositius s'ha dissenyat mantenint la flexibilitat com a objectiu. S'han desenvolupat interfícies i estàndards de naturalesa oberta per a incentivar el desenvolupament d'eines compatibles entre elles.
Per a resoldre els problemes de cablejat es van seguir dos mètodes diferents. Un va ser el desenvolupament de headstages lleugers combinats amb cables coaxials ultra fins i commutadors actius, gràcies al seguiment d'animals. Aquest desenvolupament permet reduir al mínim l'esforç imposat als animals, permetent espais amplis i experiments de llarga durada, al mateix temps que permet l'ús de headstages amb característiques avançades.
Paral·lelament es va desenvolupar un tipus diferent de headstage, amb tecnologia sense fil. Es va crear un algorisme de compressió digital especialitzat capaç de reduir l'amplada de banda a menys del 65% de la seua grandària original, estalviant energia. Aquesta reducció permet bateries més lleugeres i majors temps d'operació. L'algorisme va ser dissenyat per a ser capaç de ser implementat a una gran varietat de dispositius.
Els desenvolupaments presentats obrin la porta a noves possibilitats experimentals per a la neurociència, combinant l'adquisició electrofisiològica amb estudis conductuals en condicions naturals i estímuls complexos en temps real. / [EN] Extracellular electrophysiology is a technique widely used in neuroscience research. It can offer insights on how the brain works by measuring the electrical fields generated by neural activity. This is done through electrodes implanted in the brain and connected to amplification and digitization electronic circuitry. Of the many animal models used in electrophysiology experimentation, rodents such as rats and mice are among the most popular species.
Modern electrophysiology experiments seek increasingly complex conditions that are limited by acquisition hardware technology. Two particular aspects are of special interest: Closed-loop feedback and naturalistic behavior. In this thesis, we present developments aiming to improve on different facets of these two problems.
Closed-loop feedback encompasses all techniques in which stimuli is produced in response of an event generated by the animal. Latency, the time between trigger event and stimuli generation, must adjust to the biological timescale being studied. While modern acquisition systems feature latencies in the order of 10ms, response to fast events such as high-frequency electrical transients created by neuronal activity require latencies under $1ms$. In addition, algorithms for triggering or generating closed-loop stimuli can be complex, integrating multiple inputs in real-time. Integration of algorithm development into acquisition tools becomes an important part of experiment design.
For electrophysiology experiments featuring naturalistic behavior, animals must be able to move freely in ecologically meaningful environments, mimicking natural conditions. Experiments featuring elements such as large arenaa, environmental objects or the presence of another animals are, however, hindered by the wired nature of acquisition systems. Other physical constraints, such as implant weight or power restrictions can also affect experiment time, limiting their duration. Beyond the technical limits, complex experiments are enriched when electrophysiology data is integrated with multiple sources, for example animal tracking or brain microscopy. Tools allowing mixing data independently of the source open new experimental possibilities.
The technological advances presented on this thesis addresses these topics. We have designed devices with closed-loop latencies under 200us while featuring high-bandwidth interfaces. These allow the simultaneous acquisition of hundreds of electrophysiological channels combined with other heterogeneous data sources, such as video or tracking. The control software for these devices was designed with flexibility in mind, allowing easy implementation of closed-loop algorithms. Open interface standards were created to encourage the development of interoperable tools for experimental data integration.
To solve wiring issues in behavioral experiments, we followed two different approaches. One was the design of light headstages, coupled with ultra-thin coaxial cables and active commutator technology, making use of animal tracking. This allowed to reduce animal strain to a minimum allowing large arenas and prolonged experiments with advanced headstages.
A different, wireless headstage was also developed. We created a digital compression algorithm specialized for neural electrophysiological signals able to reduce data bandwidth to less than 65.5% its original size without introducing distortions. Bandwidth has a large effect on power requirements. Thus, this reduction allows for lighter batteries and extended operational time. The algorithm is designed to be able to be implemented in a wide variety of devices, requiring low hardware resources and adding negligible power requirements to a system.
Combined, the developments we present open new possibilities for neuroscience experiments combining electrophysiology acquisition with natural behaviors and complex, real-time, stimuli. / The research described in this thesis was carried out at the Polytechnic University of Valencia
(Universitat Politècnica de València), Valencia, Spain in an extremely close collaboration with the
Neuroscience Institute - Spanish National Research Council - Miguel Hernández University (Instituto
de Neurociencias - Consejo Superior de Investigaciones Cientí cas - Universidad Miguel Hernández),
San Juan de Alicante, Spain. The projects described in chapters 3 and 4 were developed in collabo-
ration with, and funded by, Open Ephys, Cambridge, MA, USA and OEPS - Eléctronica e produção,
unipessoal lda, Algés, Portugal. / Cuevas López, A. (2021). Development of Advanced Closed-Loop Brain Electrophysiology Systems for Freely Behaving Rodents [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/179718
|
42 |
Nuevas contribuciones en aplicaciones de fusión multimodal de bioseñalesPereira González, Luis Manuel 26 December 2024 (has links)
[ES] Esta tesis aborda el problema de fusión de datos en el ámbito de la neurociencia. El objetivo principal de este estudio es la fusión de modalidades, con énfasis en la fusión bimodal de señales biomédicas fMRI+EEG y de ECG+EEG. Las técnicas de fusión de datos tienen como objetivo alcanzar la exactitud y precisión en la toma de decisiones que sería más difícil con una sola modalidad. Hemos hecho una extensa revisión bibliográfica que contempla la fusión temprana y la fusión tardía de la siguiente manera: fusión temprana a nivel de sensores; fusión temprana a nivel de características; fusión tardía a nivel de scores; y fusión tardía a nivel de decisiones. En cada uno de esos apartados se presenta una tabla comparativa con las debilidades y fortalezas de cada método, así como los trabajos más citados.
También hemos hecho aportes teóricos en esta área abordando el tema de la comparación entre la fusión temprana y la fusión tardía (soft y hard) para un problema multimodal de dos clases, dando elementos sobre la opción más adecuada a la hora de seleccionar la fusión temprana o tardía. Para este análisis hemos asumido inicialmente el conocimiento de los modelos utilizados., para después considerar modelos donde hay que estimar una serie de parámetros a partir de un conjunto de entrenamiento. El análisis se ha hecho para datos incorrelados y se ha extendido a datos con matrices de covarianza arbitrarias.
Hemos realizado un estudio experimental como complemento del capítulo teórico. A partir de cuatro experimentos diferentes se destaca la efectividad de la fusión de datos multimodales para la mejora del rendimiento de los clasificadores. Los métodos de fusión y los clasificadores probados mostraron consistentemente un rendimiento superior en términos de métricas como el F1 score, la precisión, AUC y APR, en comparación con el uso de una sola modalidad de datos. Los resultados logrados subrayan la importancia de la fusión de datos en aplicaciones neurocientíficas y abren nuevas posibilidades para el desarrollo de sistemas de diagnóstico más precisos y robustos. / [CA] Aquesta tesi aborda el problema de la fusió de dades en l'àmbit de la neurociència. L'objectiu principal d'aquest estudi és la fusió de modalitats, amb èmfasi en la fusió bimodal de senyals biomèdiques fMRI+EEG i d'ECG+EEG. Les tècniques de fusió de dades tenen com a objectiu assolir l'exactitud i precisió en la presa de decisions que seria més difícil amb una sola modalitat. Hem fet una extensa revisió bibliogràfica que contempla la fusió primerenca i la fusió tardana de la següent manera: fusió primerenca a nivell de sensors; fusió primerenca a nivell de característiques; fusió tardana a nivell de puntuacions; i fusió tardana a nivell de decisions. En cadascun d'aquests apartats es presenta una taula comparativa amb les debilitats i fortaleses de cada mètode, així com els treballs més citats.
També hem fet aportacions teòriques en aquesta àrea abordant el tema de la comparació entre la fusió primerenca i la fusió tardana (suau i dura) per a un problema multimodal de dues classes, donant elements sobre l'opció més adequada a l'hora de seleccionar la fusió primerenca o tardana. Per a aquesta anàlisi, hem assumit inicialment el coneixement dels models utilitzats, per després considerar models on cal estimar una sèrie de paràmetres a partir d'un conjunt d'entrenament. L'anàlisi s'ha fet per a dades incorrelades i s'ha estès a dades amb matrius de covariància arbitràries.
Hem realitzat un estudi experimental com a complement del capítol teòric. A partir de quatre experiments diferents es destaca l'efectivitat de la fusió de dades multimodals per a la millora del rendiment dels classificadors. Els mètodes de fusió i els classificadors provats van mostrar constantment un rendiment superior en termes de mètriques com el F1 score, la precisió, AUC i APR, en comparació amb l'ús d'una sola modalitat de dades. Els resultats obtinguts subratllen la importància de la fusió de dades en aplicacions neurocientífiques i obrin noves possibilitats per al desenvolupament de sistemes de diagnòstic més precisos i robusts. / [EN] This thesis addresses the problem of data fusion in the field of neuroscience. The main objective of this study is to explore multimodal fusion, with an emphasis on bimodal fusion of biomedical signals such as fMRI+EEG and ECG+EEG. Data fusion techniques aim to achieve accuracy and precision in decision-making that would be more challenging with a single modality. We have conducted an extensive literature review covering early fusion and late fusion, as follows: early fusion at the sensor level, early fusion at the feature level, late fusion at the score level, and late fusion at the decision level. In each of these sections, we present a comparative table outlining the strengths and weaknesses of each method, as well as the most cited works.
We have also made theoretical contributions to this area by addressing the comparison between early and late fusion (both soft and hard) for a two-class multimodal problem, providing insights into the most suitable choice between early and late fusion. For this analysis, we initially assumed knowledge of the models used, then considered scenarios where a series of parameters must be estimated from a training set. The analysis was conducted for uncorrelated data and extended to data with arbitrary covariance matrices.
We conducted an experimental study to complement the theoretical chapter. Based on four different experiments, the effectiveness of multimodal data fusion in enhancing classifier performance was highlighted. The tested fusion methods and classifiers consistently demonstrated superior performance in terms of metrics such as F1 score, precision, AUC, and APR compared to using a single data modality. The results emphasize the importance of data fusion in neuroscientific applications and open up new possibilities for developing more accurate and robust diagnostic systems. / Pereira González, LM. (2024). Nuevas contribuciones en aplicaciones de fusión multimodal de bioseñales [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/213614
|
Page generated in 0.0485 seconds