Spelling suggestions: "subject:"neuroendocrine.""
41 |
Identificação, caracterização molecular, mapeamento e colocalização do receptor 1 do hormônio concentrador de melanina em mama de ratas lactantes e não-lactantes / Identification, Molecular Characterization, Mapping and Colocalization of Melanin-concentrating Hormone Receptor 1 in Mammary Gland of Lactating and no-lactating ratBatagello, Daniella Sabino 29 April 2016 (has links)
Introdução: O Hormônio Concentrador de Melanina (MCH) apresenta a maior expressão de seu RNA mensageiro (RNAm) no período final da lactação (19º dia) em áreas inusitadas no sistema nervoso central (SNC) de roedor, como a área pré-óptica medial (MPOA). Após esse período não encontramos mais o RNAm e a proteína na MPOA, e há descrições de flutuações no nível sérico do MCH, o que sugere uma possível função do MCH no período final da lactação. Foi descrita a presença de MCH em diversos órgãos como: pulmão, tiróide, baço, trato gastrintestinal e em destaque no SNC que é responsável pela expressão de 98% do peptídeo. Foram descritos dois receptores: MCHR1 e MCHR2. No entanto, não há descrição da presença do MCHR1 em tecido mamário, embora evidências sustentem uma possível relação do MCH e o período de lactação. Objetivos: 1) investigar a presença do MCHR1 em tecido mamário de ratas lactantes e ratas em diestro; 2) seqüenciar o receptor encontrado em tecido mamário para compará-lo com o receptor expresso no SNC e, 3) estabelecer o tipo celular reativo ao MCHR1 em tecido mamário de ratas lactantes e ratas em diestro. Material e Métodos: tecido mamário e do SNC de ratas Long-Evans lactantes e não-lactantes foram submetidos às técnicas de hibridização in situ, RT-PCR e RT-qPCR (com tecidos controles periféricos). Cortes do SNC de ratas Long-Evans (19º dia de lactação) foram submetidos à técnica RNAscope. Sequenciamento gênico foi realizado em amostras de tecidos mamários e hipocampo de rata lactante. Tecidos mamários de ratas lactantes foram submetidos às técnicas de imuno-histoquímica (fosfatase alcalina e imunofluorescência indireta) e western blot. Resultados: 1) pela técnica de hibridização in situ pudemos descrever a presença do Mchr1 em tecido mamário e do SNC (12º, 19º dias de lactação e diestro); em tecido mamário de ratas lactantes o Mchr1 se encontra em células na epiderme, derme, estroma e parênquima, e em ratas não-lactantes apenas na epiderme e derme. A técnica RNAscope confirmou a presença do Mchr1 no SNC de rata lactante. Por RT-PCR e RT-qPCR confirmou-se a presença do Mchr1 em tecidos mamários e controles de ratas lactantes e não-lactantes, com aumento da expressão gênica no hipocampo de ratas no 19º dia lactação. Por western blot, o MCHR1 encontra-se aumentado em hipocampo de ratas lactantes (12º dia); 2) o sequenciamento gênico identificou 100% de identidade da sequência do Mchr1 do tecido mamário (com pele e sem pele) com a do SNC; 3) células MCHR1-ir foram identificadas na epiderme, derme, estroma e parênquima de glândulas mamárias (ratas lactantes). Conclusão: podemos inferir, de forma inédita, que o Mchr1 é expresso no tecido mamário de ratas lactantes e nãolactantes, apresenta 100% de identidade com a sequência do SNC, a expressão varia por setor mamário, e é mais expresso no hipocampo (19º dia lactação) indicando possível neurogênese hipocampal no final da lactação e, que o MCHR1 está mais presente no tecido mamário de ratas lactantes no 12º dia lactação. Todos esses resultados sugerem um possível envolvimento do MCH no controle da lactação / Introduction: The melanin-concentrating hormone (MCH) mRNA shows the higher expression during lactation final period (around 19th day) in novel sites of central nervous system (CNS) of rodents, such as the ventral part of medial preoptic area (MPOAv). Thereafter, mRNA and protein are not found in the MPOAv and, there are seric alterations of MCH suggesting a possible function in the lactation final period. MCH is present peripheral tissues: lung, thyroid, spleen, gastrointestinal tract and the CNS is responsible for 98% of expression. The MCH has two receptors: MCHR1 and MCHR2. However, there are no descriptions of MCHR1 expression in the mammary glands of non-lactating or lactating dams albeit evidence support a possible relationship between MCH and lactation. Objective: 1) investigate the presence of MCHR1 in mammary tissue, 2) sequencing the receptor present in the mammary tissue of female rats to verify the homology to compare with central Mchr1 and 3) identify the cellular type that express the mRNA of Mchr1 and, the protein MCHR1 and. Material and Methods: mammary gland and brain tissue of Long-Evans rats (lactating and no-lactating) were submitted to in situ hibridization, RT-PCR and qRT-PCR (with peripheral control tissues). Sample of CNS Long-Evans rats (19th day lactation) was submitted to RNAscope technique. Sequencing was performed in mammary gland tissue and hippocampus of lactating rat. Mammary gland tissue of lactating rats was submitted to immunohistochemistry (alcaline phosphatase and indirect immunofluorescence) and western blot. Results: 1) Mchr1 was detected by in situ hibridization in mammary gland and CNS tissue (12th, 19th days of lactation and diestrus phase). In mammary gland of lactating rats Mchr1 was found in cells of epidermis, dermis, stroma and parenchyma, and in no-lactating rats only in the epidermis and dermis. RNAscope confirmed the presence of Mchr1 in the CNS of lactating rats. By RT-PCR and qRT-PCR, Mchr1 was detected in mammary gland and controls tissues of lactating and no-lactating rats, with higher expression in hippocampus on the 19th day lactating rats. By western blot, MCHR1 is increased in hippocampus of lactating rats (12th day); 2) the gene sequencing confirmed 100% identity os Mchr1 sequence of mammary tissue (with and without skin) compared to CNS; 3) MCHR1-ir cells were detected in epidermis, dermis, stroma and parenchyma (lactating rats). Conclusion: we can infer, in an unprecedented manner, the Mchr1 is expressed in mammary tissue of lactating and non-lactating rats, presents 100% identity with the sequence of the CNS, expression varies by mammary sector, and is best expressed in the hippocampus (19th day lactation) indicating possible hippocampal neurogenesis at the end of lactation and the MCHR1 is more present in the breast tissue of lactating rats on the 12th day lactation. All these results suggest a possible involvement of MCH in the control of lactation
|
42 |
Estudo da ação do núcleo pré-mamilar ventral de ratos no controle reprodutivo e em respostas à exposição feromonal. / The role of the ventral premammillary nucleus of rats in the reproductive control and in responses to pheromonal stimulation.Donato Júnior, José 28 November 2008 (has links)
O objetivo do presente trabalho foi investigar a relação do núcleo pré-mamilar ventral (PMV): 1) na regulação do sistema reprodutivo em fêmeas, 2) como mediador dos efeitos da leptina e 3) na resposta à estimulação feromonal. Para tanto, induzimos lesão bilateral do PMV em ratas. Foi observado que a lesão do PMV promove: alteração no ciclo estral e da histologia ovariana; redução dos níveis de estradiol e LH; e supressão de vias neurais que controlam o eixo reprodutivo. Além disso, a lesão do PMV impediu que a administração central de leptina induzisse secreção de LH durante o jejum. Em outros experimentos, realizados em ratos machos, verificou-se que neurônios que sintetizam óxido nítrico no PMV e no núcleo medial da amígdala são ativados em resposta ao odor de conspecíficos, em especial o de fêmeas. Assim, foi demonstrado que o PMV exerce papel relevante na regulação do sistema reprodutivo e media a ação estimulatória da leptina na secreção do LH. Além disso, o PMV faz parte do circuito neural relacionado com a resposta aos feromônios. / The objective of this study was to assess the role played by the ventral premammillary nucleus (PMV): 1) in the regulation of the female reproductive system, 2) as a mediator of the effects of leptin and 3) in response to pheromonal stimulation. For this purpose, we produced bilateral PMV lesions in female rats. We observed that PMV lesion: disrupted the estrous cycle and altered the number of ovarian antral follicles; reduced the estradiol and LH levels; and suppressed neural pathways that control the reproductive axis. We found that lesions of the PMV blocked leptin stimulation of LH secretion during fasting. In another experiment using male rats, we showed that nitric oxide synthesizing neurons in the PMV and medial nucleus of amygdala are activated by conspecific odors, especially female odors. Thus, we showed that PMV plays an important role in the control of females reproductive system and mediates the stimulatory effects of leptin on LH secretion. Also, PMV is part of the neural circuitry related to pheromonal responses.
|
43 |
Regulation of corticotropin-releasing factor concentration and overflow in the rat central nervous system.McClure-Sharp, Jilliane Mary, mikewood@deakin.edu.au January 1998 (has links)
Corticotropin-releasing factor (CRF) is the primary hormone of the hypothalamo-pituitary adrenal axis (HPA-axis). In addition to its endocrine function, it has been proposed that CRF acts as a neurotransmitter. The widespread distribution of CRF immunoreactivity and CRF receptors in the rat central nervous system (CNS) supports this theory. Immunohistochemical studies have demonstrated high levels of CRF immunoreactivity the rat hypothalamus, a brain region involved in the regulation and integration of a variety of endocrine and autonomic homeostatic mechanisms. CRF has been shown to be involved in a number of these activities such as blood pressure control, food and water intake, behaviour and emotional integration. Many of these activities demonstrate progressive dysfunction as ageing proceeds. The aim of this thesis was to investigate the regulation of CRF in the rat CNS, particularly over the period of maturation and ageing. Tissue extraction and peptide radioimmunoassay (RIA) techniques were developed in order to measure regional CRF concentrations as a function of age in the rat CNS. Seven brain regions were examined including the hypothalamus, pituitary, medulla oblongata, pons, cerebral cortex, cerebellum and midbrain. Three age ranges were investigated: 3 4 weeks, 4 5 months and 14 18 months, representing young, mature and old age groups. Data for the tissues of individual rats from each age group were analysed using one-way analysis of variance (ANOVA) with post-hoc Scheffé tests (SPSS Release 6 for Windows, 1989 1993). CRF were detected in measurable quantities in all brain regions examined. Different age-related patterns of change were observed in each brain region. CRF concentrations (ng/g tissue) were highest in the pituitaries of young rats and were significantly reduced over the period of maturation (P< 0.05). However, the high CRF concentration of the young rat pituitary was likely to be a factor of the smaller tissue mass. Although the absolute CRF content (ng/tissue) of this tissue appeared to decline with maturation and ageing, the reduction was not significant (P>0.05). Therefore the pituitary of the young rat was relatively enriched with CRF per gram tissue. The highest CRF concentration in mature and aged rats was measured in the hypothalamus, in accordance with previous immunohistochemical studies. Hypothalamic CRF concentrations (ng/g tissue) demonstrated no significant alterations with maturation and ageing. The absolute CRF content (ng/tissue) of the hypothalamus was significantly less in the young rat compared to mature and aged animals, however this was accompanied by a smaller tissue mass (P<0.05). The CRF concentrations (ng/g tissue) of the rat cerebral cortex and medulla oblongata demonstrated significant reduction with advancing age (P<0.05), however in both cases this appeared to be due to significant increases in mean tissue mass. The absolute CRF content of these tissues (ng/tissue) were not significantly different over the period of maturation and ageing (P>0.05). CRF concentration (ng/g tissue) and absolute content (ng/tissue) of the pons demonstrated a trend to increase with advanced age in the rat, however this was not significant in both cases (P>0.05). Of interest were the significant increases observed in the CRF concentrations of the cerebellum and midbrain (ng/g tissue with advanced ageing (P<0.05). Significant increases were also observed in the mean tissue mass and absolute CRF content (ng/tissue) of these regions in aged rats (P<0.05). These findings perhaps indicate increased CRF synthesis and or decreased CRF turnover in these tissues with advancing age. The second stage of these studies examined age-related alterations in basal and potassium-stimulated hypothalamic CRF and overflow over the period of maturation and ageing in the rat, and required the preliminary development of an in vitro tissue superfusion system. The concomitant release of the co-modulatory compound, neuropeptide Y (NPY) was also measured. NPY has been shown to positively regulate CRF release and gene expression in the hypothalamus. In addition, NPY has been demonstrated to be involved in a number of hypothalamic activities, including blood pressure control and food intake regulation. Hypothalamic superfusion data were analysed using one factor repeated measures ANOVA (SPSS Release 6 for Windows, 1989-1993) followed by least significant difference tests ( Snedecor and Cochran, 1967) to enable both time and age comparisons. Basal hypothalamic CRF overflow was unaltered with maturation and ageing in the rat. Potassium stimulation (56 mM) elicted a significant 2 3 fold increase in hypothalamic CRF overflow across age groups (P<0.05). Stimulated hypothalamic CRF overflow was significantly greater in the young rat compared to the mature and aged animals (P<0.05). The enhanced response to depolarizing stimulus was observed at an age when the absolute CRF content of the hypothalamus was significantly less that of other age groups. It is possible that the enhanced responsiveness of the young rat may be of survival advantage in life threatening situations. Basal hypothalamic NPY overflow was much less than that of CRF, and potassium stimulation resulted in a very different age-related profile. The hypothalamic NPY response to depolarization was significantly reduced in the young rat and declined significantly with advanced ageing (P<0.05). The contrasting profiles of stimulated CRF and NPY overflow may indicate the activity of alternative regulatory factors present in the hypothalamus, whose activity may also be affected in an age-related manner. The final stage of these studies examined the nature of NPY modulation of hypothalamic CRF overflow in the mature rat. The facilitatory effect of NPY on hypothalamic CRF overflow was confirmed. The application of NPY (0.1 µM) significantly increased CRF overflow approximately 4 fold of basal (P<0.05). In addition, the role of the NPY-Y1 receptor was investigated by the prior application of Y1 receptor antagonists, GW1229 (0.05 µM). At this concentration GW1229 significantly reduced hypothalamic CRF overflow induced by perfusion with NPY (0.1 µm), P<0.05. It was concluded the Y1 receptor does have a role in the regulation of hypothalamic CRF overflow by NPY.
|
44 |
The Serotonergic System as a Target for Neuroendocrine Disruption in the Brain of Goldfish (Carassius auratus)Mennigen, Jan A. 03 May 2011 (has links)
Serotonin stimulates reproduction and inhibits feeding/growth in the neuroendocrine brain of goldfish. The objective of this thesis is to study the effects of selective serotonin
reuptake inhibitor pharmaceuticals (SSRIs) on these systems, as SSRIs, such as fluoxetine, are detected in effluent and bioconcentrate in the brain of wild fish. Genes of the serotonin system were cloned to identify molecular conservation, seasonal expression, and tissue distribution. The serotonin transporter, the target molecule of fluoxetine, was highly conserved and ubiquitously expressed in goldfish. Seasonal changes of hypothalamic gene expression of the serotonin transporter support a role in the seasonal modulation of both processes. Fluoxetine injection experiments were used to assess effects on reproductive endpoints and to identify molecular mechanisms in the neuroendocrine brain. Fluoxetine inhibited serum estradiol concentrations in female goldfish and decreased isotocin mRNA abundance in the hypothalamus and telencephalon. Isotocin injections stimulated circulating estradiol concentrations, providing a causal link. Evidence for an involvement of serotonin in isotocin regulation was investigated using immunocytochemistry and 5-HT1A receptor agonists and antagonists. A close proximity of
serotonin fibers and isotocin cell bodies and fibers was found in the telencephalon and pituitary,respectively. Injection of a 5-HT1A receptor antagonist inhibited isotocin mRNA expression in the telencephalon. Identified gene targets were investigated in waterborne fluoxetine exposures,including environmental concentrations. Waterborne fluoxetine led to a reduction in basal and pheromone-stimulated milt volume in male goldfish. Gene expression evidence indicated a central inhibitory effect of fluoxetine through the decrease in mRNA abundance of follicle-stimulating hormone in the pituitary and isotocin in the telencephalon. Feeding rate and weight decreased in fluoxetine-injected goldfish, indicating an anorexigenic effect. Fluoxetine induced changes in the gene expression of the feeding peptides neuropeptide Y, corticotropin-releasing factor, and cocaine- and amphetamine-regulated transcript-I in the hypothalamus and telencephalon. Waterborne exposure to fluoxetine validated the anorexigenic effect in goldfish and was correlated with increased expression of corticotropin-releasing factor mRNA, an anorectic peptide. The thesis provides evidence for disrupting effects of fluoxetine on neuroendocrine control of reproductive
function and feeding/growth in goldfish, partially at environmental concentrations. The thesis provides the framework for the investigation of existing aquatic contaminants which modulate the serotonin system.
|
45 |
The Serotonergic System as a Target for Neuroendocrine Disruption in the Brain of Goldfish (Carassius auratus)Mennigen, Jan A. 03 May 2011 (has links)
Serotonin stimulates reproduction and inhibits feeding/growth in the neuroendocrine brain of goldfish. The objective of this thesis is to study the effects of selective serotonin
reuptake inhibitor pharmaceuticals (SSRIs) on these systems, as SSRIs, such as fluoxetine, are detected in effluent and bioconcentrate in the brain of wild fish. Genes of the serotonin system were cloned to identify molecular conservation, seasonal expression, and tissue distribution. The serotonin transporter, the target molecule of fluoxetine, was highly conserved and ubiquitously expressed in goldfish. Seasonal changes of hypothalamic gene expression of the serotonin transporter support a role in the seasonal modulation of both processes. Fluoxetine injection experiments were used to assess effects on reproductive endpoints and to identify molecular mechanisms in the neuroendocrine brain. Fluoxetine inhibited serum estradiol concentrations in female goldfish and decreased isotocin mRNA abundance in the hypothalamus and telencephalon. Isotocin injections stimulated circulating estradiol concentrations, providing a causal link. Evidence for an involvement of serotonin in isotocin regulation was investigated using immunocytochemistry and 5-HT1A receptor agonists and antagonists. A close proximity of
serotonin fibers and isotocin cell bodies and fibers was found in the telencephalon and pituitary,respectively. Injection of a 5-HT1A receptor antagonist inhibited isotocin mRNA expression in the telencephalon. Identified gene targets were investigated in waterborne fluoxetine exposures,including environmental concentrations. Waterborne fluoxetine led to a reduction in basal and pheromone-stimulated milt volume in male goldfish. Gene expression evidence indicated a central inhibitory effect of fluoxetine through the decrease in mRNA abundance of follicle-stimulating hormone in the pituitary and isotocin in the telencephalon. Feeding rate and weight decreased in fluoxetine-injected goldfish, indicating an anorexigenic effect. Fluoxetine induced changes in the gene expression of the feeding peptides neuropeptide Y, corticotropin-releasing factor, and cocaine- and amphetamine-regulated transcript-I in the hypothalamus and telencephalon. Waterborne exposure to fluoxetine validated the anorexigenic effect in goldfish and was correlated with increased expression of corticotropin-releasing factor mRNA, an anorectic peptide. The thesis provides evidence for disrupting effects of fluoxetine on neuroendocrine control of reproductive
function and feeding/growth in goldfish, partially at environmental concentrations. The thesis provides the framework for the investigation of existing aquatic contaminants which modulate the serotonin system.
|
46 |
Modeling electrical spiking, bursting and calcium dynamics in gonadotropin releasing hormone (GnRH) secreting neuronsFletcher, Patrick Allen 11 1900 (has links)
The plasma membrane electrical activities of neurons that secrete gonadotropin releasing
hormone (GnRH), referred to as GnRH neurons hereafter, have been studied extensively.
A couple of mathematical models have been developed previously to explain different
aspects of these activities including spontaneous spiking and responses to stimuli such as current injections, GnRH, thapsigargin (Tg) and apamin. The goal of this paper is to
develop one single, minimal model that accounts for the experimental results reproduced
by previously existing models and results that were not accounted for by these models.
The latter includes two types of membrane potential bursting mechanisms and the
associated calcium oscillations in the cytosol. One of them has not been reported in
experimental literatures on GnRH neurons and is thus regarded as a model prediction.
Other improvements achieved in this model include the incorporation of a more detailed
description of calcium dynamics in a three dimensional cell body with the ion channels
evenly distributed on the cell surface. Although the model is mainly based on data
collected in cultured GnRH cell lines, we show that it is capable of explaining some
properties of GnRH neurons observed in several of other preparations including mature
GnRH neurons in hypothalamic slices. One potential explanation is suggested. A
phenomenological reduction of this model into a simplified form is presented. The
simplified model will facilitate the study of the roles of plasma membrane electrical
activities on the pulsatile release of GnRH by these neurons when it is coupled with a
model of pulsatile GnRH release based on the autoregulation mechanism.
|
47 |
Molecular Characterization, Expression Analysis and Physiological Roles of Allatotropin in Rhodnius prolixusMasood, Maryam 05 December 2013 (has links)
Rhodnius prolixus, the principal Chagas disease vector, requires a blood meal to complete its moult cycle into the next stage. Allatotropins (ATs), a family of peptides first isolated from Manduca sexta, have been shown to regulate the biosynthesis of juvenile hormone, an insect growth and development hormone; however, ATs, being multimodal peptides, also exhibit myotropic effects on some insect visceral muscles. Here, this AT family of peptides has been examined in R. prolixus. Genomic analysis revealed a cDNA fragment of 973bp encoding one mature amidated AT tridecapeptide (Rhopr-AT) with high transcript levels observed, via RT-PCR, in the central nervous system (CNS) and pool of fat body and trachea. AT-like immunoreactive neurons were found throughout the CNS and AT-like immunoreactive processes were present on some peripheral tissues. Bioassays using hindgut and dorsal vessel contraction, however, failed to demonstrate any effect of Rhopr-AT on these tissues. Future work will examine the effects of Rhopr-AT on JH production.
|
48 |
Molecular Characterization, Expression Analysis and Physiological Roles of Allatotropin in Rhodnius prolixusMasood, Maryam 05 December 2013 (has links)
Rhodnius prolixus, the principal Chagas disease vector, requires a blood meal to complete its moult cycle into the next stage. Allatotropins (ATs), a family of peptides first isolated from Manduca sexta, have been shown to regulate the biosynthesis of juvenile hormone, an insect growth and development hormone; however, ATs, being multimodal peptides, also exhibit myotropic effects on some insect visceral muscles. Here, this AT family of peptides has been examined in R. prolixus. Genomic analysis revealed a cDNA fragment of 973bp encoding one mature amidated AT tridecapeptide (Rhopr-AT) with high transcript levels observed, via RT-PCR, in the central nervous system (CNS) and pool of fat body and trachea. AT-like immunoreactive neurons were found throughout the CNS and AT-like immunoreactive processes were present on some peripheral tissues. Bioassays using hindgut and dorsal vessel contraction, however, failed to demonstrate any effect of Rhopr-AT on these tissues. Future work will examine the effects of Rhopr-AT on JH production.
|
49 |
The Serotonergic System as a Target for Neuroendocrine Disruption in the Brain of Goldfish (Carassius auratus)Mennigen, Jan A. 03 May 2011 (has links)
Serotonin stimulates reproduction and inhibits feeding/growth in the neuroendocrine brain of goldfish. The objective of this thesis is to study the effects of selective serotonin
reuptake inhibitor pharmaceuticals (SSRIs) on these systems, as SSRIs, such as fluoxetine, are detected in effluent and bioconcentrate in the brain of wild fish. Genes of the serotonin system were cloned to identify molecular conservation, seasonal expression, and tissue distribution. The serotonin transporter, the target molecule of fluoxetine, was highly conserved and ubiquitously expressed in goldfish. Seasonal changes of hypothalamic gene expression of the serotonin transporter support a role in the seasonal modulation of both processes. Fluoxetine injection experiments were used to assess effects on reproductive endpoints and to identify molecular mechanisms in the neuroendocrine brain. Fluoxetine inhibited serum estradiol concentrations in female goldfish and decreased isotocin mRNA abundance in the hypothalamus and telencephalon. Isotocin injections stimulated circulating estradiol concentrations, providing a causal link. Evidence for an involvement of serotonin in isotocin regulation was investigated using immunocytochemistry and 5-HT1A receptor agonists and antagonists. A close proximity of
serotonin fibers and isotocin cell bodies and fibers was found in the telencephalon and pituitary,respectively. Injection of a 5-HT1A receptor antagonist inhibited isotocin mRNA expression in the telencephalon. Identified gene targets were investigated in waterborne fluoxetine exposures,including environmental concentrations. Waterborne fluoxetine led to a reduction in basal and pheromone-stimulated milt volume in male goldfish. Gene expression evidence indicated a central inhibitory effect of fluoxetine through the decrease in mRNA abundance of follicle-stimulating hormone in the pituitary and isotocin in the telencephalon. Feeding rate and weight decreased in fluoxetine-injected goldfish, indicating an anorexigenic effect. Fluoxetine induced changes in the gene expression of the feeding peptides neuropeptide Y, corticotropin-releasing factor, and cocaine- and amphetamine-regulated transcript-I in the hypothalamus and telencephalon. Waterborne exposure to fluoxetine validated the anorexigenic effect in goldfish and was correlated with increased expression of corticotropin-releasing factor mRNA, an anorectic peptide. The thesis provides evidence for disrupting effects of fluoxetine on neuroendocrine control of reproductive
function and feeding/growth in goldfish, partially at environmental concentrations. The thesis provides the framework for the investigation of existing aquatic contaminants which modulate the serotonin system.
|
50 |
From Neuroendocrinology to Neuroimmunomodulation – A Tribute to Prof. Dr. Samuel McCannBornstein, Stefan R. 03 March 2014 (has links) (PDF)
One of the leading experts in the field of Neuroendocrinology and Neuroimmunmodulation, Samuel Mac Donald McCann, known by all his friends as ‘Don’, passed away in 2007. This article pays tribute to his outstanding scientific contribution and a glimpse on his fascinating personality. A member of the National Academy of Sciences of the United States and pioneer in the field of neuroendocrine regulation, he identified numerous hormones and peptides and set the stage for basic concepts in physiology and clinical medicine. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
Page generated in 0.0766 seconds