Spelling suggestions: "subject:"neuronale"" "subject:"neuronal""
131 |
Aplicaciones de potenciales evocados para la generación de señales bioelectromagnéticas de identificación personalZárate Gonzales, César Armando January 2008 (has links)
La presente Tesis de Investigación Doctoral hace un análisis sistemático, sistémico y armónico del registro del potencial evocado hasta llegar a la codificación de esta señal bioeléctrica para su uso como registro individual específico mediante código de barras. El código nervioso de una señal sensorial, cuyos detalles falta descifrar, está conformado por un conjunto de señales eléctricas que procesan las redes neurales del sistema sensorial, los núcleos subcorticales y la corteza cerebral, el cual es posible analizar y decodificar. Las señales nerviosas sensoriales representan por sí solas el medio exterior, pero sus procesos esenciales son decodificados en la corteza cerebral, donde se activa la información psíquica correspondiente, el decodificar las señales neuronales y su significado. Estas señales se procesan en redes simétricas interconectadas en tiempo real, es decir, existen diferentes formas simétricas de señales en cualquier estructura del cerebro. Tomando al cerebro humano como sistema de emisión de señales bioelectromagnéticas, se crea una interfaz con el potencial evocado, lo que permite analizar las distintas latencias y amplitudes en forma de señales neuronales bioelectromágneticas, expresadas en minivoltios y hertzios, dentro de una longitud de onda que evoca el cerebro, utilizando modelos matemáticos como las series de Fourier, wavelets y fractales. En esta interfaz se introduce el código de barras que es un código basado en la representación mediante un conjunto de líneas paralelas verticales de distinto grosor y espaciado, que en su conjunto contienen una determinada información. De este modo, el código de barras permite reconocer rápidamente a una persona, en tanto permite generar un registro individual específico de esta persona. Con esta finalidad, se obtuvieron pruebas médicas del potencial evocado y se decodificaron mediante la trasformada de Fourier, lo que permitió la descomposición de la señal en componentes de frecuencias diferentes, g, que corresponde al espectro de frecuencias de la señal f. Luego, estas fueron procesadas mediante los modelos fractales, lográndose obtener una trasformada que se expresa en un código de barras personalizado. Es decir, el código nervioso es descifrado mediante la matematización con el uso de las series de Fourier y el procesamiento de la dimensión fractal y de su transformada, hacia un código de barras con múltiples aplicaciones en todas las ciencias. / The following Ph.D. thesis research presents a systematic, systemic and harmonic analysis from the evoked potential record until the encoding of this bioelectric signal; in order to use it as a specific individual record through barcode. The nervous code of a sensorial signal, which details need to be decoded, is formed by a group of electrical signal that processes the neural networks of the sensorial system, the sub cortical nuclei and the cerebral cortex. It is possible to analyze and decode. The sensorial nervous signals represent themselves the external mean, but their essential process is decoded at the cerebral cortex level, where it actives the respective psychic information. To decode the neural signals and their meaning. These signals are processed in real-time interconnected symmetrical networks, which mean there are different shapes of symmetrical signals within any brain structure. Taking the human brain as a bioelectromagnetic signal emission system, an interface is created with the evoked potential, which allows analyzing the different latencies and amplitudes through bioelectromagnetic neural signals, expressed on mini volts and hertz, within a wavelength that evokes the brain using mathematical models such as the Fourier series, wavelets and fractals. In this interface, a barcode is produced, which is a code based on the representation of a group of vertical parallel lines with different widths and spacings, storing specific information. In this manner, the barcode allows to recognize a person quickly, as it allows generating a specific individual record of this person. In this way, clinical tests of the evoked potential were obtained, they were decoded by the Fourier Transform, which allowed decomposing a signal into components of different frequency, g, represents the frequency spectrum of the signal f. Then, it was processed through fractal models obtaining a transform expressed by a personal barcode. In other words, the nervous code is decoded by mathematical means, using the Fourier series and the process fractal dimension and its transform, into a barcode with multiple applications to several sciences.
|
132 |
Simulation Rekursiver Auto-Assoziativer Speicher (RAAM) durch Erweiterung eines klassischen Backpropagation-SimulatorsSeifert, Christin, Parthey, Jan 06 June 2003 (has links) (PDF)
Rekursive Auto-Assoziative Speicher (RAAM) sind spezielle Neuronale Netze (NN),
die in der Lage sind, hierarchiche Strukturen zu verarbeiten. Bei der
Simulation dieser Netze gibt es einige Besonderheiten, wie z.B. die dynamische
Trainingsmenge, zu beachten. In der Arbeit werden diese und die daraus
resultierenden angepassten Lernalgorithmen erörtert. Außerdem wird ein
normaler Backpropagation-Simulator (Xerion) um die Fähigkeiten für die
Simulation von RAAMs erweitert.
|
133 |
Algorithmische Optimierung von Teststrukturen zur Charakterisierung von Mikrosystemen auf WaferebeneStreit, Petra 19 July 2010 (has links) (PDF)
Diese Diplomarbeit beschäftigt sich mit der Entwicklung von Teststrukturen zur
Charakterisierung von Mikrosystemen auf Waferebene. Sie dienen zur Bestimmung
von Prozesstoleranzen. Ziel dieser Arbeit ist es, einen Algorithmus zu entwickeln,
mit dem Teststrukturen optimiert werden können. Dazu wird ein Ansatz zur Optimierung
von Teststrukturen mittels eines Genetischen Algorithmus untersucht.
Grundlage für diesen ist eine Bewertung der Strukturen hinsichtlich der Sensitivität
gegenüber den Fertigungsparametern und der Messbarkeit der Eigenmoden.
Dem Leser wird zuerst ein Einblick in das Themengebiet und in die Verwendung von
Teststrukturen gegeben. Es folgen Grundlagen zur Fertigung und Messung von Mikrosystemen,
zur Parameteridentifikation, sowie zu Optimierungsalgorithmen. Anschließend
wird ein Bewertungs- und Optimierungskonzept, sowie eine Softwareimplementation
für die sich aus der Optmierung ergebenden Aufgaben, vorgestellt.
Unter anderem eine Eigenmodenerkennung mittels Neuronalem Netz und einer auf
der Vandermond’schen Matrix basierende Datenregression. Die Ergebnisse aus der
Umsetzung durch ein Testframework werden abschließend erläutert. Es wird gezeigt,
dass die Optimierung von Teststrukturen mittels Genetischem Algorithmus
möglich ist. Die dargestellte Bewertung liefert für die untersuchten Teststrukturen
nachvollziehbare Resultate. Sie ist in der vorliegenden Form allerdings auf Grund
zu grober Differenzierung nicht für den Genetischen Algorithmus geeignet. Entsprechende
Verbesserungsmöglichkeiten werden gegeben. / This diploma thesis deals with the development of test-structures for the characterization
of microsystems on wafer level. Test-structures are used for the determination
of geometrical parameters and material properties deviations which are
influenced by microsystem fabrication prozesses. The aim of this work is to establish
principles for the optimization of the test-structures. A genetic algorithm as
an approach for optimization is investigated in detail. The reader will get an insight
in the topic and the application of test-structures. Fundamentals of fabrication and
measurement methods of microsystems, the parameter identification procedure and
algorithms for optimization follow. The procedures and a corresponding software
implementation of some applied issues, which are needed for the optimization of
test structures, are presented. Among them are neural network algorithms for mode
identification and a data regression algorithm, based on Vandermonde Matrix.
Results of implemented software algorithms and an outlook conclude this work. It
is shown, that the optimization of test-structure using a genetic algorithm is possible.
An automated parameter variation procedure and the extraction of important
test-structures parameters like sensitivity and mode order are working properly.
However, the presented evaluation is not suitable for the genetic algorithm in the
presented form. Hence, improvements of evaluation procedure are suggested.
|
134 |
Towards efficient implementation of artificial neural networks in systems on chip /Ponca, Marek. Scarbata, Gerd January 2007 (has links) (PDF)
Techn. Univ., Diss.--Ilmenau, 2006.
|
135 |
Bewertung des Schwingungskomforts in PKW mit Hilfe von Regressionsmodellen und künstlichen neuronalen Netzen /Stammen, Karsten. January 2009 (has links)
Zugl.: Hamburg, Helmut-Schmidt-Universiẗat, Diss.
|
136 |
Diseño de sistemas de reconocimiento de rostrosCorrea Martin Sebastian, Chichizola, Franco January 2001 (has links)
No description available.
|
137 |
Un agente para clasificación y filtrado de páginas webGómez, Sergio Alejandro January 2001 (has links)
No description available.
|
138 |
Robuste Klassifikation von EEG-Daten durch neuronale Netze : Untersuchungen am Beispiel der einkanaligen automatischen Schlafstadien- und Narkosetiefenbestimmung /Wenzel, Andreas. January 2005 (has links)
Zugl.: Ilmenau, Techn. University, Diss., 2005.
|
139 |
Qualitätskontrolle auf Basis optischer Prozessdiagnostik und neuronaler Netze beim thermischen Spritzen /Ernst, Felix Björn Gustav. January 2007 (has links)
Zugl.: Aachen, Techn. Hochsch., Diss., 2007.
|
140 |
Ein KI-unterstütztes Durchlaufzeit-, Bestands- und Kapazitätsregelkreiskonzept für die WerkstattfertigungMüller, Steffen January 2005 (has links)
Zugl.: Cottbus, Techn. Univ., Diss., 2005
|
Page generated in 0.0549 seconds