• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 295
  • 69
  • 43
  • 11
  • 10
  • 7
  • 5
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 493
  • 211
  • 135
  • 72
  • 72
  • 63
  • 61
  • 58
  • 51
  • 51
  • 47
  • 46
  • 45
  • 43
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Exploring New Physics in the Dark Matter and Neutrino Sectors

Tammaro, Michele 22 October 2020 (has links)
No description available.
232

Design of the electron spectrometer for the HUNTER experiment and timescale of electron thermalization in liquid Argon for directional detection of WIMP dark matter

Granato, Francesco January 2022 (has links)
Neutrino physics has been going through rapid developments since the particle was first proposed by Pauli. The observation of neutrino oscillations has prompted an investigation of the issue of neutrino mass, with the "seesaw" mechanism garnering theoretical support. The HUNTER (Heavy Unseen Neutrinos from the Total Energy-momentum Reconstruction) experiment brings together AMO, nuclear physics and high energy physics researchers from Temple University, Houston University, UCLA and Princeton University to develop an apparatus capable of probing the keV-mass range of sterile neutrinos with high precision. The HUNTER detector makes use of the well-established COLTRIMS techniques for the collection of all the decay products of a neutrino-producing decay, and the reconstruction of their initial momenta and energies. Energy and momentum conservation allow then for the reconstruction of the missing neutrino mass.Electrons produced in the decay are guided towards their detector by an optimized set of electrodes paired to a magnetic field to confine their trajectories into spirals. A magnetic shield protects the electron from external stray fields that could alter their trajectories. A thorough study on the main source of background, namely the source scattering of ions, was conducted. As an additional topic, the feasibility of a directional-sensitive dark matter search experiment has been studied. Simple models of galactic dark matter distribution suggest that the motion of the Earth in space might introduce a directional anisotropy in the WIMPs momentum distribution at the Earth. The shape of a WIMP-like recoil in a target material could be be used to extract directional information for the incident WIMP, and thus confirm the anisotropy. The peculiar microphysics of liquid Argon requires thermalization of ionization electrons for a signal to form. To determine if directional information can be extracted, one needs to understand the energy spectrum of the electrons emitted in recoil event. Then, one needs a model to determine the time scale of the thermalization, and the distance to which the electrons travel. / Physics
233

Study of Neutrino-Water Interactions using Nuclear Emulsion Detectors with Improved Event Reconstructions / 原子核乾板検出器を用いたニュートリノ-水反応の研究と事象再構成手法の改善

Odagawa, Takahiro 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第24406号 / 理博第4905号 / 新制||理||1701(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 中家 剛, 准教授 WENDELL Roger, 教授 永江 知文 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
234

The ANITA-I Limit on Gamma Ray Burst Neutrinos

Palladino, Kimberly Jackson January 2009 (has links)
No description available.
235

A NEW MEASUREMENT OF THE NEUTRON MULTIPLICITY EMITTED IN 252Cf SPONTANEOUS FISSION

Hansell, Adam, 0000-0002-2021-4829 January 2020 (has links)
The Precision Reactor Oscillation and SPECTrum (PROSPECT) experiment was designed to probe short baseline oscillations of electron antineutrinos in search of eV-scale sterile neutrinos and precisely measure the 235U reactor antineutrino spectrum from the High Flux Isotope Reactor (HFIR) at Oak Ridge national Laboratory (ORNL). The PROSPECT antineutrino detector (AD) provided excellent background rejection due to its segmented design and use of 6Li-loaded liquid scintillator for a neutron capture target. By tracking the neutron capture lifetime from cosmogenic neutrons and a 252Cf neutron source, we suspect the 6Li content of our scintillator changed over time. We look at this evolution and uncertainty in the PROSPECT oscillation and spectrum analyses. Additionally, the 252Cf source data taken with the PROSPECT AD for detector calibrations are used to make a new measurement on the neutron multiplicity probability distribution emitted during spontaneous fissions, with an average multiplicity of 3.81 ± 0.05 neutrons per fission. / Physics
236

Constraints on New Physics from Various Neutrino Experiments

Pronin, Alexey 08 May 2008 (has links)
In this thesis we consider a number of past, present, and future neutrino experiments designed to test physics beyond the Standard Model. First, we analyze potential new physics explanations of the NuTeV anomaly and check their compatibility with the most recent experimental data. The models we consider are: gauged Lmu-Ltau, gauged B-3Lmu, and S1, S3, V1, V3 leptoquarks. We find that only the triplet leptoquark models can explain NuTeV and be compatible with the data from other experiments at the same time, and only if the components of the triplet have different masses. Then, we analyze the prospects of discovery of heavy Majorana neutrinos (neutrissimos) suggested by the Okamura model at the LHC. We find that these particles, if produced, will live short enough to decay inside of the detector, while long enough to lead to a narrow peak in the invariant mass spectrum of the decay products. We estimate the typical masses of the neutrissimos to be in the TeV range. However, studies exist that have shown that if their masses are larger than about 150 GeV then the production cross-section is too small to lead to an observable event rate. Thus, we conclude that it will not be possible to detect the neutrissimo at the LHC unless its mass is smaller that about 150 GeV which corresponds to a very small region close to the edge of the parameter space of the Okamura model. Nevertheless, we argue that the signature of the neutrissimo may be detectable in other neutrino experiments which may be carried out in the future. As examples, we consider the NuSOnG experiment, which is a fixed target neutrino scattering experiment proposed at Fermilab, and a hypothetical long-baseline neutrino oscillation experiment in which the Fermilab NUMI beam is aimed at the Hyper-Kamiokande detector in Japan. In addition to the sensitivity to neutrissimos, we analyze the capabilities of these experiments to constraint the coupling constants and masses of new particles in various models of new physics suggested in the literature. The models we consider are: neutrissimo models, models with generation distinguishing Z's such as topcolor assisted technicolor, models containing various types of leptoquarks, R-parity violating SUSY, and extended Higgs sector models. In several cases, we find that the limits thus obtained could be competitive with those expected from direct searches at the LHC. In the event that any of the particles discussed here are discovered at the LHC, then the observation, or non-observation, of these particles in the NuSOnG and Fermilab-to-Hyper-Kamiokande experiments could help in identifying what type of particle had been observed. / Ph. D.
237

Constraints on New Physics from Neutrino and Other Particle Experiments

Kao, Yee 06 January 2011 (has links)
In this thesis we analyze a number of past, current, and future experiments to extract information on physics beyond the Standard Model. We use the Jacobi method to derive a set of simplified expressions for the probabilities of neutrino oscillations in matter. we show the possible constraints that can be placed on various models beyond the Standard Model. In several cases, we find that the limits thus thus obtained could be competitive with those expected from direct searches at the Large Hadron Collider. We then consider the possible effects of new physics beyond the Standard Model on precision measurements. In particular, we look at recent Bell/Babar results on the B meson branching fraction, and the bounds on Tau-decays from Babar. As a general framework of analyzing new physics beyond the Standard Model, we discuss what constraints can be placed on R-parity violating SUSY from these experiments. To complete our analysis, we update the single-coupling bounds on R-parity violating supersymmetry using the most up to date data as of October 2009. In addition to the data listed in the latest Review of Particle Properties, we utilize a new measurement of the weak charge of cesium-133, and preliminary Tau-decay branching fractions from Babar. Analysis of semileptonic D-decay is improved by the inclusion of experimentally measured form-factors into the calculation of the Standard Model predictions. / Ph. D.
238

Precision Background Stability and Response Calibration in Borexino: Prospects for Wideband, Precision Solar Neutrino Spectroscopy and BSM Neutrino Oscillometry Through a Deeper Detector Understanding

Bravo Berguno, David 06 December 2016 (has links)
This work sets out to be a description of the initiatives utilizing the Borexino liquid scintillator neutrino observatory to perform the first direct, high-precision, wideband solar neutrino spectroscopy measurement of the the solar neutrino spectrum's main components, as well as its next-generation short-baseline source program (SOX). Its original scope revolved around the creation of a O(MCi) ⁵¹Cr source to be inserted under the detector, intended to explore the small region of the anomaly-favored sin²θ₁₄/Δm₁₄² phase space where sterile neutrinos may lie -or otherwise unambiguously measure or disprove signs of anomalous oscillatory behavior in low L/E electron-neutrinos and antineutrinos. Investigating the feasibility and optimization of producing such a large amount of ⁵¹Cr for the source, by irradiating chromium material in a high-flux reactor, required extensive simulative work with the MCNP-5 neutronics code. With the switch of pace toward a ¹⁴Ce-¹⁴⁴Pr electron-antineutrino source, this work was re-oriented toward the efforts to re-calibrate the detector after the 2009-10 campaign, improving and expanding upon it by the introduction of new source fabrication techniques, a source positioning LED device, and a re-evaluation of the objectives sought after, fitting the needs of Borexino's Phase 2 priorities. Indeed, the detector's unprecedented and record-setting background levels are tightening its requirement for background stability. Aiming to reduce fluctuations in 210Po levels that remain problematic in Borexino's quest to lower the upper limit of the solar CNO neutrino flux (or even measure it), among other components, a new Temperature Monitoring and Management System was deployed and associated tools necessary to fully utilize it were developed as part of the present work. Computational Fluid Dynamics (CFD) simulations in 2D and 3D, conductive and fully convective, were also developed in collaboration with Dr Riccardo Mereu of Milan's Polytechnic Institute in order to model, characterize and ultimately predict the subtle fluid currents (around 10⁻⁷) m/s) that may be of concern for the required background stability. A brief discussion of the recent >5sigma measurement of geo-neutrinos by Borexino, a complementary part of the work for this thesis, is presented as well. / Ph. D.
239

The Daya Bay Reactor Neutrino Experiment

Meng, Yue 22 September 2014 (has links)
The Daya Bay reactor neutrino experiment is a high sensitivity experiment designed to determine the last unknown neutrino mixing angle $theta_{13}$ by measuring disappearance of reactor antineutrinos emitted from six 2.9 $GW_{th}$ reactors at the Daya Bay Nuclear Power Station. There are eight identical Gd-loaded liquid scintillator detectors deployed in two near (flux-weighted baseline 512 $m$ and 561 $m$) and one far (1579 $m$) underground experimental halls to detect the inverse beta decay interaction. This dissertation describes the Daya Bay Experiment and individual contributions to this experiment. Chapter 1 reviews the history of the neutrino and the neutrino oscillation phenomena. The reactor based neutrino experiments in different times are described in this chapter in detail. It presents the motivation of the Daya Bay Experiment. In Chapter 2, the neutrino detection method and the $theta_{13}$ relative measurement method are introduced. This chapter focuses on the design of the Daya Bay Experiment, including antineutrino detector, calibration system, muon veto system and muon tagging system. Chapter 3 shows the design, development, construction, and assembly of Muon Pool PMT calibration system, and presents an algorithm of calculating the muon pool PMT timing offset values. Chapter 4 focuses on the manufacture, installation and commissioning of RPC HV system. Chapter 5 presents the analyses of the radioactive isotopes induced by comic muons. The Daya Bay detector energy response model is also described in detail. The relative rate analysis results exclude a zero value from $sin^22theta_{13}$ with a significance of 7.7 standard deviation using 139 days of data, 28909 (205308) antineutrino candidates which were recorded at the far hall (near halls) and shows $sin^22theta_{13} = 0.089pm0.011$ in a three-neutrino framework. A combined analysis of the $overline nu_e$ rates and energy spectra based on the detector energy response model improved measurement of the mixing angle $sin^22theta_{13} = 0.090^{+0.008}_{-0.009}$ by using 217 days of data, 41589 (203809 and 92912) antineutrino candidates were detected in the far hall (near halls). Also the first direct measurement of the $overline nu_e$ mass-squared difference $|Delta m^2_{ee}|= (2.59^{+0.19}_{-0.20})times10^{-3}$ $eV^2$. It is consistent with $|Delta m^2_{mumu}|$ measured by muon neutrino disappearance, supporting the three-flavor oscillation model. / Ph. D.
240

Background studies and design optimisation of the SuperNEMO demonstrator module : search for 2νββ and 0νββ decays of 116Cd into the excited states of 116Sn with NEMO-3 / Étude de bruit de fond et optimisation du design du module démonstrateur de SuperNEMO : recherche des désintégrations 2νββ et 0νββ du Cd-116 vers les états excités du Sn-116 avec NEMO-3

Le Noblet, Thibaud 26 September 2017 (has links)
Les détecteurs NEMO-3 et SuperNEMO ont été conçus pour la recherche de décroissance double bêta sans émission de neutrinos. Ces détecteurs fournissent une approche unique dans la recherche des événements double bêta en combinant des mesures à la fois de trajectoires, de temps de vol et d'énergie. De plus, grâce à la séparation de la source double bêta du reste du système de détection, les détecteurs NEMO ont la possibilité d'étudier plusieurs isotopes double bêta avec une forte réjection du bruit de fond.Cette thèse présente plusieurs études réalisées dans le cadre de l'optimisation et la préparation du détecteur SuperNEMO, successeur de NEMO-3. La première concerne l'optimisation des performances du détecteur en fonction de la configuration mécanique de ses feuilles sources. La conclusion de cette étude est que les deux configurations considérées sont équivalentes. La seconde étude s'intéresse à l'un des principaux bruits de fond que constitue le radon dans la recherche des désintégrations double bêta. Cette étude a été concrétisée par le développement et l'implémentation d'un algorithme permettant l'identification et la mesure des événements provenant de ce bruit de fond. Le deuxième volet de cette thèse rapporte l'analyse des données de NEMO-3 pour rechercher les décroissances double bêta avec et sans émission de neutrino du Cd-116 vers les états excités du Sn-116. Ces décroissances n'ont jamais été observées à ce jour, et les limites obtenus sur les états excités (2+) et (0+) sont les premières utilisant le détecteur NEMO-3. / The NEMO-3 and SuperNEMO detectors have been designed to search for neutrinoless double beta decays. These detectors provide a unique approach combining a calorimetric and a tracking measurement of double beta events emitted by a separated isotopic source. This approach allows to search for neutrinoless double beta decays among several isotopes with good background rejection. This thesis presents many studies performed for the optimisation and the preparation of the SuperNEMO detector, successor of NEMO-3. The first study concerns the optimisation of the detector performances with respect to the design of the source foil. The conclusion of this study is that the two configurations considered are equivalent. The second study focuses on the radon which constitutes one of the main background to the search for double beta decays. In this study an algorithm has been developed and implemented to search for the alpha particle allowing the identification and the measurement of the radon events. The thesis is completed by an analysis of the NEMO-3 data to search for the double beta decay of Cd-116 via the excited state of Sn-116. These decays have never been observed up to date and the limits set on the excited states (2+) and (0+) are the first using the NEMO-3 detector.

Page generated in 0.0933 seconds