1 |
Simulation-Based Analysis of Wake Turbulence Encounters in Current Flight OperationsSwol, Christopher Douglas 04 September 2009 (has links)
One way to address the need for increased airspace system capacity is to reduce the separation requirements between aircraft in-flight. A key limiting factor to any reduction in separation is wake turbulence. The potential for aircraft to encounter wake turbulence poses a threat to both safety as well as increased efficiency. This research effort seeks to develop a model that can be used to evaluate the potential for wake encounters in today's flight operations, as well as serve as a tool for evaluating future reduced separation scenarios. The wake encounter model (WEM) achieves this goal by integrating results from NASA's TDAWP wake turbulence prediction model with a flight operations model based on radar flight track data. Unique in this model's design, is the ability to evaluate the potential for wake encounters throughout the terminal area versus previous research which has largely been restricted to areas near the runway. Expanding the model's reach provides not only for a more thorough analysis of potential wake encounters, but also creates an effective tool for evaluating future reduced separation scenarios.
The WEM model was used to evaluate operations at three metropolitan airspaces in the United States: Atlanta, Los Angeles and New York. The results from these model runs indicated that potential wake encounters in today's operations were few. More importantly, the results from the WEM create a baseline for wake turbulence exposure in today's system, by which future scenarios can be compared against as part of any comprehensive reduced separation safety analysis. / Master of Science
|
2 |
A state machine representation of pilot eye movementsHarris, Artistee Shayna 01 July 2009 (has links)
With the development of these new interfaces, such as Next Generation Air Transportation System (NextGen), and the evolution of the United States National Air System (NAS) from a ground-based system of Air Traffic Control (ATC) to a satellite-based system of air traffic management (FAA, 2009), new evaluations for efficiency and safety are required. Therefore, these tasks require visual behaviors such as search, fixation, tracking, and grouping. Therefore, designing and implementing a virtual eye movement application that generates gaze and action visualizations could provide detailed data on the allocation of visual attention across interface entities.The goal is to develop state-machine representations of straight-and-level flight, turns, climbs and descents within the Pilot Eye Flight Deck Application to simulate pilots' eye movement.
|
3 |
Simulation-Based Study to Quantify Data-Communication Benefits in Congested Airport Terminal AreaEnea, Gabriele 05 May 2008 (has links)
The scope of this study was to evaluate the impact of the air traffic controller-to-pilot communication standard known as CPDLC or Data-Communication on the future air traffic operations. The impact was evaluated from the double viewpoint of airport delays and air traffic controllers' workload. RAMS simulation software is used to perform all the runs and from its output data the values of terminal area delays and controllers workload are obtained. The New York Metroplex terminal area was used as a case study. Because of its complexity, where three major airports (i.e. JFK, Newark, and La Guardia) interact and constraint each other, this area was particularly interesting to be studied and the data analyzed gave a valuable insight on the possible future impact of Data-Communication in congested terminal areas. The results of the study, based on some previous man-in-the-loop simulations performed by the FAA in the nineties, showed that significant potential benefits could be obtained with the complete implementation of such technologies in the workload experienced by air traffic controllers. Moreover some small but not negligible benefits were obtained in the total delays accrued by each airport studied. On the other hand, the simulations of the future demand predicted by the FAA demonstrated that without a significant increment in capacity or limitation on the traffic growth intolerable delays would be recorded across the NAS in the future. For the complexity of the simulation model calibration and for the very time-consuming run time not all the scenarios described in the methodology were tested, demonstrating the weakness of RAMS as a ground simulation model. / Master of Science
|
4 |
Applying a model-based observer to quantitatively assess spatial disorientation and loss of energy state awarenessBozan, Anil Emilio 08 June 2015 (has links)
This thesis demonstrates how a model-based observer can be applied to estimate the reference pilot expectation that can be achieved with any instrument scanning behavior and established models of vestibular inputs. The MBO, developed by the Georgia Tech Cognitive Engineering Center, is applied here in both simple maneuvers examining spatial disorientation and full Air Traffic Control concepts of operations examining loss of energy state awareness. The computational experiments presented in this thesis examine how different effects (i.e., instrument scan pattern, accuracy of pilot perception of flight display information, and awareness of control surface deflections) can prevent or mitigate the susceptibility to spatial disorientation and loss of energy state awareness, thus setting requirements for intervention and countermeasure designs in terms of the scanning behavior they must foster.
|
5 |
Quantifying the Effects of Uncertainty in a Decentralized Model of the National Airspace SystemSherman, Stephanie Irene 08 June 2015 (has links)
The modernization of the National Air Traffic Control System is on the horizon, and with it, the possible introduction of autonomous air vehicles into the national airspace. Per the FAA Aerospace Forecast (FAA, 2013), U.S. carrier passenger traffic is expected to average 2.2 percent growth per year over the next 20 years with government statistics indicating that the average domestic load factor for airlines in 2014 was approximately 84.4 percent (US Department of Transportation, 2015). Adding to that demand, the potential introduction of unmanned and autonomous air vehicles motivates reconsideration of control schemes. One of the proposed solutions (Eby, 1994) would involve a decentralized control protocol. Equipping each aircraft with the information necessary to navigate safely through integrated airspace becomes an information sharing problem: how much information about other aircraft is required for a pilot to safely fly the gamut of a heavily populated airspace and what paradigm shifts may be necessary to safely and efficiently utilize available airspace? This thesis describes the development of a tool for testing alternative traffic management systems, centralized or decentralized, in the presence of uncertainty.
Applying a computational fluid dynamics-inspired approach to the problem creates a simulation tool to model both the movement of traffic within the airspace and also allows study of the effects of interactions between vehicles. By incorporating a Smoothed Particle Hydrodynamics (SPH) based model, discrete particle aircraft each carry a set of unique deterministic and stochastic properties. With this model, aircraft interaction can be studied to better understand how variations in the nondeterministic properties of the system affect its overall efficiency and safety. The tool is structured to be sufficiently flexible as to allow incorporation of different collision detection and avoidance rules for aircraft traffic management. / Master of Science
|
6 |
Analysis of Potential Wake Turbulence Encounters in Current and NextGen Flight OperationsSchroeder, Nataliya 01 March 2011 (has links)
Wake vortices pose a threat to a following aircraft, because they can induce a roll and compromise the safety of everyone on board. Caused by a difference in pressure between the upper and the lower part of the wings, these invisible flows of air are a major hazard and have to be avoided by separating the aircraft at considerable distances. One of the known constraints in airport capacity for both departure and arrival operations is the large headway resulting from the wake spacing separation criteria. Reducing wake vortex separations to a safe level between successive aircraft can increase capacity in the National Airspace System (NAS) with corresponding savings in delay times.
One of the main goals of the Wake Encounter Model (WEM) described in this thesis is to assess the outcome from future reduced separation criteria in the NAS. The model has been used to test probable encounters in today's operations, and can also be used to test NextGen scenarios, such as Close Parallel Approaches and reduced in-trail separation flights.
This thesis presents model enhancements to account for aircraft turning maneuvers, giving the wake a more realistic shape. Three major airspaces, New York, Southern California and Atlanta, were analyzed using the original and the enhanced WEM to determine if the enhanced model better represents the conditions in today's operations. Additionally, some analysis on the wake lateral travel for closely spaced runways is presented in this thesis. Finally, some extension tools for post -analysis, such as animation tool and various graphs depicting the interactions between wake pairs were developed. / Master of Science
|
7 |
Development of Aircraft Wake Vortex Dynamic Separations Using Computer Simulation and ModelingRoa Perez, Julio Alberto 29 June 2018 (has links)
This dissertation presents a research effort to evaluate wake vortex mitigation procedures and technologies in order to decrease aircraft separations, which could result in a runway capacity increase. Aircraft separation is a major obstacle to increasing the operational efficiency of the final approach segment and the runway.
An aircraft in motion creates an invisible movement of air called wake turbulence, which has been shown to be dangerous to aircraft that encounter it. To avoid this danger, aircraft separations were developed in the 1970s, that allows time for wake to be dissipated and displaced from an aircraft's path. Though wake vortex separations have been revised, they remain overly conservative.
This research identified 16 concepts and 3 sub-concepts for wake mitigation from the literature. The dissertation describes each concept along with its associated benefits and drawbacks. All concepts are grouped, based on common dependencies required for implementation, into four categories: airport fleet dependent, parallel runway dependent, single runway dependent, and aircraft or environmental condition dependent.
Dynamic wake vortex mitigation was the concept chosen for further development because of its potential to provide capacity benefit in the near term and because it is initiated by air traffic control, not the pilot. Dynamic wake vortex mitigation discretizes current wake vortex aircraft groups by analyzing characteristics for each individual pair of leader and follower aircraft as well as the environment where the aircraft travel. This results in reduced aircraft separations from current static separation standards.
Monte Carlo simulations that calculate the dynamic wake vortex separation required for a follower aircraft were performed by using the National Aeronautics and Space Administration (NASA) Aircraft Vortex Spacing System (AVOSS) Prediction Algorithm (APA) model, a semi-empirical wake vortex behavior model that predicts wake vortex decay as a function of atmospheric turbulence and stratification. Maximum circulation capacities were calculated based on the Federal Aviation Administration's (FAA) proposed wake recategorization phase II (RECAT II) 123 x 123 matrix of wake vortex separations.
This research identified environmental turbulence and aircraft weight as the parameters with the greatest influence on wake vortex circulation strength. Wind has the greatest influence on wake vortex lateral behavior, and aircraft mass, environmental turbulence, and wind have the greatest influence on wake vortex vertical position.
The research simulated RECAT II and RECAT III dynamic wake separations for Chicago O'Hare International (ORD), Denver International Airport (DEN) and LaGuardia Airport (LGA). The simulation accounted for real-world conditions of aircraft operations during arrival and departure: static and dynamic wake vortex separations, aircraft fleet mix, runway occupancy times, aircraft approach speeds, aircraft wake vortex circulation capacity, environmental conditions, and operational error buffers. Airport data considered for this analysis were based on Airport Surface Detection Equipment Model X (ASDE-X) data records at ORD during a 10-month period in the year 2016, a 3-month period at DEN, and a 4-month period at LGA.
Results indicate that further reducing wake vortex separation distances from the FAA's proposed RECAT II static matrix, of 2 nm and less, shifts the operational bottleneck from the final approach segment to the runway. Consequently, given current values of aircraft runway occupancy time under some conditions, the airport runway becomes the limiting factor for inter-arrival separations.
One of the major constraints of dynamic wake vortex separation at airports is its dependence on real-time or near-real-time data collection and broadcasting technologies. These technologies would need to measure and report temperature, environmental turbulence, wind speed, air humidity, air density, and aircraft weight, altitude, and speed. / PHD / An aircraft in motion creates an invisible movement of air called wake turbulence, which has been shown to be dangerous to aircraft that encounter it. To avoid this danger, aircraft separations were developed in the 1970s, that allows time for wake to be dissipated and displaced from an aircraft’s path. Though wake vortex separations have been revised, they remain overly conservative.
The separation of aircraft approaching a runway is a major obstacle to increasing the operational efficiency of airports. This dissertation presents a research effort to decrease aircraft separations as they approach and depart the airport, which could result in a runway capacity increase.
This research identified 16 concepts and 3 sub-concepts for wake mitigation from the literature. The dissertation describes each concept along with its associated benefits and drawbacks.
Dynamic wake vortex mitigation was the concept chosen for further development because of its potential to provide capacity benefit in the near term and because it is controlled the by air traffic control, not the pilot. Dynamic wake vortex mitigation, analyzes the characteristics for each individual pair of leader and follower aircraft as well as the environment where the aircraft travel.
This research identified environmental turbulence and aircraft weight as the parameters with the greatest influence on wake vortex circulation strength. The wind has the greatest influence on wake vortex lateral behavior, and aircraft mass, environmental turbulence, and wind have the greatest influence on wake vortex vertical position.
The research simulated aircraft operations for Chicago O’Hare International Airport, Denver International Airport and LaGuardia Airport. The simulation accounted for real-world conditions of aircraft operations during arrival and departure: aircraft fleet mix, aircraft runway occupancy time, aircraft approach speeds, aircraft wake vortex circulation capacity, environmental conditions, and pilot-controller human error.
Results indicate that further reducing aircraft separation distances from static aircraft separations, shifts the operational bottleneck from the airspace to the runway. Consequently, given current values of aircraft runway occupancy time, the airport runway becomes the limiting factor to increase capacity.
One of the major constraints of dynamic wake vortex separation at airports is its dependence on real-time data collection and broadcasting technologies. These technologies would need to measure and report temperature, environmental turbulence, wind speed, air humidity, air density, and aircraft weight, altitude, and speed.
|
8 |
Genetic Characterization of Central and South American Populations of Scarlet Macaw (Ara macao)Kim, Tracy Ann 05 1900 (has links)
The wild populations of the Scarlet Macaw subspecies native to southern Mexico and Central America, A. m. cyanoptera, have been drastically reduced over the last half century and are now a major concern to local governments and conservation groups. Programs to rebuild these local populations using captive bred specimens must be careful to reintroduce the native A. m. cyanoptera, as opposed to the South American nominate subspecies (A. m. macao) or hybrids of the two subspecies. Molecular markers for comparative genomic analyses are needed for definitive differentiation. Here I describe the isolation and sequence analysis of multiple loci from 7 pedigreed A. m. macao and 14 pedigreed A. m. cyanoptera specimens. The loci analyzed include the 18S rDNA genes, the complete mitogenome as well as intronic regions of selected autosomally-encoded genes. Although the multicopy18S gene sequences exhibited 10% polymorphism within all A. macao genomes, no differences were observed between any of the 21 birds whose genomes were studied. In contrast, numerous polymorphic sites were observed throughout the 16,993 bp mitochondrial genomes of both subspecies. Although much of the polymorphism was observed in the genomes of both subspecies, subspecies-specific alleles were observed at a number of mitochondrial loci, including 12S, 16S, CO2 and ND3. Evidence of possible subspecies-specific alleles were also found in three of four screened nuclear loci. Collectively, these mitochondrial and nuclear loci can be used as the basis to distinguish A. m. cyanoptera from the nominate subspecies, A. m. macao, as well as identify many hybrids, and most importantly will contribute to further reintroduction efforts.
|
9 |
Robust Stationary Time and Frequency Synchronization with Integrity in Support of Alternative Position, Navigation, and TimingSmearcheck, Matthew A. 13 June 2013 (has links)
No description available.
|
10 |
Automatic Dependent Surveillance-Broadcast (ADS-B) Space-Oriented Message Set DesignDuan, Pengfei 03 October 2011 (has links)
No description available.
|
Page generated in 0.0416 seconds