• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Material development of doped hafnium oxide for non-volatile ferroelectric memory application

Lederer, Maximilian 16 June 2022 (has links)
Seit der Entdeckung von Ferroelektrizität in Hafniumoxid stellt es aufgrund seiner Prozesskompatibilität im Bereich der Mikroelektronik sowie seiner besonderen Eigenschaften ein wachsendes Forschungsfeld dar. Im Speziellen wird die Anwendung in nicht-flüchtigen Speichern, in neuromorphen Bauelementen sowie in piezo-/pyroelektrischen Sensoren untersucht. Jedoch ist das Verhalten von ferroelektrischem Hafniumoxid im Vergleich zu Ferroelektrika mit Perovskit-Struktur nicht im Detail verstanden. Zudem spielen Prozesseinflüsse während und nach der Abscheidung eine entscheidende Rolle für die Materialeigenschaften aufgrund der metastabilen Natur der ferroektrischen Phase in diesem Materialsystem. In dieser Arbeit werden die grundlegenden physikalischen Eigenschaften von Hafniumoxid, Prozesseinflüsse auf die Mikrostruktur und Zuverlässigkeitsaspekte von nicht-flüchtigen sowie neuromorphen Bauelementen untersucht. Im Bezug auf die physikalischen Eigenschaften zeigen sich hier deutliche Belege für ferroelastische 90° Domänenwandbewegungen in Hafniumoxid-basierten Dünnschichten, welche in einem ähnlichen Verhalten wie ein Antiferroelektrikum resultieren. Weiterhin wird über die Entdeckung von einer mittels elektrischem Feld induzierten Kristallisation in diesem Materialsystem berichtet. Für die Charakterisierung der Mikrostruktur wird als neue Methode Transmissions-Kikuchi-Diffraktion eingeführt, welche eine detaillierte Untersuchung der lokalen kristallographischen Phase, Orientierung und Gefügestruktur ermöglicht. Hierbei zeigen sich deutliche Vorzugsorientierungen in Abhängigkeit des Substrates, der Dotierstoffkonzentration sowie der Glühtemperatur. Auf Basis dieser Ergebnisse lassen sich die beobachteten Zuverlässigkeitsverhalten in Bauelementen erklären und mittels Defektkontrolle weiter optimieren. Schließlich wird das Verhalten in neuromorphen Bauelementen untersucht und Leitlinien für Prozess- und Bauelementoptimierung gegeben.:Abstract i Abstract ii List of Figures vi List of Tables x Acronyms xi Symbols xiv 1 Introduction 1 2 Theoretical background 3 2.1 Behavior of ferroelectric materials 3 2.1.1 Phase transitions at the Curie temperature 4 2.1.2 Domains, domain walls, and microstructure 5 2.2 Ferroelectricity in HfO2 6 2.2.1 Thermodynamics and kinetics 8 2.2.2 Antiferroelectric-like behavior, wake-up effect, and fatigue 11 2.2.3 Piezo- and pyroelectric effects 13 2.3 Ferroelectric FETs 13 2.3.1 Endurance, retention and variability 14 2.3.2 Neuromorphic devices 15 3 Methodology 17 3.1 Electrical analysis 17 3.1.1 Capacitors 17 3.1.2 FeFETs 19 3.2 Structural and chemical analysis 20 3.2.1 Grazing-incident X-ray diffraction (GIXRD) 20 3.2.2 Transmission electron microscopy (TEM) 20 3.2.3 Time-of-flight secondary ion mass spectrometry (ToF-SIMS) 21 3.3 Transmission Kikuchi diffraction 21 3.4 Sample preparation 23 4 The physics of ferroelectric HfO2 25 4.1 Ferroelastic switching 25 4.2 Electric field-induced crystallization 30 5 Microstructure engineering 33 5.1 Microstructure and ferroelectric domains in HfO2 33 5.2 Doping influences 34 5.2.1 Zr doping (similar ionic radius) 35 5.2.2 Si doping (smaller ionic radius) 43 5.2.3 La doping (larger ionic radius) 50 5.2.4 Co-doping 50 5.3 Annealing influences 53 5.4 Interlayer influences 58 5.5 Interface layer influences 62 5.5.1 Structural differences in the HfO2 layer 63 5.5.2 Interactions of the interface and HfO2 layer 67 5.5.3 Substrate-driven changes in the Si-doping profile 73 5.6 Phenomenological wake-up behaviors and process guidelines 77 6 HfO2-based ferroelectric FETs 81 6.1 Endurance, retention and variability 81 6.1.1 Analytic model of HfO2-based FeFETs 84 6.1.2 Endurance improvements by interface fluorination 94 6.2 Neuromorphic devices and circuits 98 6.2.1 Current peroclation paths in FeFETs 100 6.2.2 Material and stack influences on synaptic devices 105 6.2.3 Reliability aspects of synaptic devices 106 7 Conclusion and outlook 109 Appendix 142 Density-functional-theory calculations 142 Supplementary Figures 143 Publications 145 Acknowledgment 156 Declaration 158 / The discovery of ferroelectricity in hafnium oxide spurred a growing research field due to hafnium oxides compatibility with processes in microelectronics as well as its unique properties. Notably, its application in non-volatile memories, neuromorphic devices as well as piezo- and pyroelectric sensors is investigated. However, the behavior of ferroelectric hafnium oxide is not understood into depth compared to common perovskite structure ferroelectrics. Due the the metastable nature of the ferroelectric phase, process conditions have a strong influence during and after its deposition. In this work, the physical properties of hafnium oxide, process influences on the microstructure as well as reliability aspects in non-volatile and neuromorphic devices are investigated. With respect to the physical properties, strong evidence is provided that the antiferroelectric-like behavior in hafnium oxide based thin films is governed by ferroelastic 90° domain wall movement. Furthermore, the discovery of an electric field-induced crystallization process in this material system is reported. For the analysis of the microstructure, the novel method of transmission Kikuchi diffraction is introduced, allowing an investigation of the local crystallographic phase, orientation and grain structure. Here, strong crystallographic textures are observed in dependence of the substrate, doping concentration and annealing temperature. Based on these results, the observed reliability behavior in the electronic devices is explainable and engineering of the present defect landscape enables further optimization. Finally, the behavior in neuromorphic devices is explored as well as process and design guidelines for the desired behavior are provided.:Abstract i Abstract ii List of Figures vi List of Tables x Acronyms xi Symbols xiv 1 Introduction 1 2 Theoretical background 3 2.1 Behavior of ferroelectric materials 3 2.1.1 Phase transitions at the Curie temperature 4 2.1.2 Domains, domain walls, and microstructure 5 2.2 Ferroelectricity in HfO2 6 2.2.1 Thermodynamics and kinetics 8 2.2.2 Antiferroelectric-like behavior, wake-up effect, and fatigue 11 2.2.3 Piezo- and pyroelectric effects 13 2.3 Ferroelectric FETs 13 2.3.1 Endurance, retention and variability 14 2.3.2 Neuromorphic devices 15 3 Methodology 17 3.1 Electrical analysis 17 3.1.1 Capacitors 17 3.1.2 FeFETs 19 3.2 Structural and chemical analysis 20 3.2.1 Grazing-incident X-ray diffraction (GIXRD) 20 3.2.2 Transmission electron microscopy (TEM) 20 3.2.3 Time-of-flight secondary ion mass spectrometry (ToF-SIMS) 21 3.3 Transmission Kikuchi diffraction 21 3.4 Sample preparation 23 4 The physics of ferroelectric HfO2 25 4.1 Ferroelastic switching 25 4.2 Electric field-induced crystallization 30 5 Microstructure engineering 33 5.1 Microstructure and ferroelectric domains in HfO2 33 5.2 Doping influences 34 5.2.1 Zr doping (similar ionic radius) 35 5.2.2 Si doping (smaller ionic radius) 43 5.2.3 La doping (larger ionic radius) 50 5.2.4 Co-doping 50 5.3 Annealing influences 53 5.4 Interlayer influences 58 5.5 Interface layer influences 62 5.5.1 Structural differences in the HfO2 layer 63 5.5.2 Interactions of the interface and HfO2 layer 67 5.5.3 Substrate-driven changes in the Si-doping profile 73 5.6 Phenomenological wake-up behaviors and process guidelines 77 6 HfO2-based ferroelectric FETs 81 6.1 Endurance, retention and variability 81 6.1.1 Analytic model of HfO2-based FeFETs 84 6.1.2 Endurance improvements by interface fluorination 94 6.2 Neuromorphic devices and circuits 98 6.2.1 Current peroclation paths in FeFETs 100 6.2.2 Material and stack influences on synaptic devices 105 6.2.3 Reliability aspects of synaptic devices 106 7 Conclusion and outlook 109 Appendix 142 Density-functional-theory calculations 142 Supplementary Figures 143 Publications 145 Acknowledgment 156 Declaration 158
2

Novel Fluorite Structure Ferroelectric and Antiferroelectric Hafnium Oxide-based Nonvolatile Memories

Ali, Tarek 26 April 2022 (has links)
The ferroelectricity in fluorite structure based hafnium oxide (HfO2) material expanded the horizon for realizing nonvolatile ferroelectric memory concepts. Due to the excellent HfO2 ferroelectric film properties, CMOS compatibility, and scalability; the material is foreseen as a replacement of the lead based ferroelectric materials with a big game changing potential for the emerging ferroelectric memories. In this thesis, the development of novel memory concepts based on the ferroelectric or antiferroelectric HfO2 material is reported. The ferroelectric field effect transistor (FeFET) memory concept offers a low power, high-speed, nonvolatile, and one cell memory solution ideal for embedded memory realization. As an emerging concept based on a novel ferroelectric material, the FeFET is challenged with key performance aspects intrinsic to the underlying physics of the device. A central part of this thesis is the development of FeFET through material and gate stack engineering, in turn leading to innovative novel device concepts. The conceptual innovation, process development, and electrical assessment are explored for an ferroelectric or antiferroelectric HfO2 based nonvolatile memories with focus on the underlying device physics. The impact of the ferroelectric material on the FeFET physics is explored via the screening of different HfO2 based ferroelectric materials, thicknesses, and the film doping concentration. The impact of material interfaces and substrate doping conditions are explored on the stack engineering level to achieve a low power and reliable FeFET. The material optimization leads to the concept of ferroelectric lamination, i.e. a dielectric interlayer between multi ferroelectric ones, to achieve a novel multilevel data storage in FeFET at reduced device variability. Toward a low power FeFET, the stack structure tuning and dual ferroelectric layer integration are explored through an MFM and MFIS integration in a single novel FeFET stack. The charge trapping effect during the FeFET switching captures the dynamics of the hysteresis polarization switching inside the stack with direct impact on the interfacial layer field. Even though manifesting as a clear drawback in FeFET operation, it can be utilized in Flash, leading to a novel hybrid low power and high-speed antiferroelectric based charge trap concept. Furthermore, the FeFET reliability is studied covering the role of operating temperature and the ferroelectric wakeup phenomenon observed in the FeFET. The temperature modulated operation, role of the high-temperature pyroelectric effect, and the temperature induced endurance and retention reliability are studied.:Table of Contents Abstract Table of Contents 1. Introduction 2. Fundamentals 2.1. Basics of Ferroelectricity 2.2. The FeFET Operation Principle and Gate Stack Theory 2.3. Structure and Outline of the PhD Thesis 3. The Emerging Memory Optimization Cycle: From Conceptual Design to Fabrication 3.1. The FeFET Conceptual Design and Layout Implementation 3.2. Gate First FeFET Fabrication: Material and Gate Stack Optimization 3.3. Novel Gate First based Memory Concepts: Device Integration and Stack Optimization 3.4. Device Characterization: Electrical Testing Schemes 4. The Emerging FeFET Memory: Material and Gate Stack Optimization 4.1. Material Aspect of FeFET Optimization: Role of the FE Material Properties 4.2. The Stack Aspect of FeFET Optimization: Role of the Interface Layer Properties 4.3. The Stack Aspect of FeFET Optimization: Role of the Substrate Implant Doping 4.4. Summary 5. A Novel Multilevel Cell FeFET Memory: Laminated HSO and HZO Ferroelectrics 5.1. The Laminate MFM and Stack Characteristics 5.2. The Laminate based FeFET Memory Switching 5.3. The Laminate FeFET Multilevel Coding Operation (1 bit, 2 bit, 3 bit/cell) 5.4. The Maximum Laminate FeFET MW Dependence on FE Stack Thickness 5.5. The Role of Wakeup and Charge Trapping 5.6. The Laminate MLC FeFET Area Dependence 5.7. The Laminate MLC Retention and Endurance 5.8. Impact of Pass Voltage Disturb on Laminate based NAND Array Operation 5.9. The Laminate FeFET based Synaptic Device 5.10. Summary 6. A Novel Ferroelectric MFMFIS FeFET: Toward Low Power and High-Speed NVM 6.1. The MFMFIS FeFET P-E and FET Characteristics 6.2. The MFMFIS based Memory Characteristics 6.3. The Impact of MFMFIS Stack Structure Tuning 6.4. The Maximum MFMFIS FeFET Memory Window 6.5. The Role of Device Scalability and Variability 6.6. The MFMFIS Area Tuning for Low Power Operation 6.7. The MFMFIS based FeFET Reliability 6.8. The Synaptic MFMFIS based FeFET 6.9. Summary 7. A Novel Hybrid Low Power and High-Speed Antiferroelectric Boosted Charge Trap Memory 7.1. The Hybrid Charge Trap Memory Switching Characteristics 7.2. The Role of Polarization Switching on Optimal Write Conditions 7.3. The Impact of FE/AFE Properties on the Charge Trap Maximum Memory Window 7.4. The Hybrid AFE Charge Trap Multi-level Coding and Array Operation 7.5. The Global Variability and Area Dependence of the Charge Trap Memory Window 7.6. The AFE Charge Trap Reliability 7.7. The Hybrid AFE Charge Trap based Synapse 7.8. Summary 8. The Emerging FeFET Reliability: Role of Operating Temperature and Wakeup Effect 8.1. The FeFET Temperature Reliability: A Temperature Modulated Operation 8.2. The FeFET Temperature Reliability: Role of the Pyroelectric Effect 8.3. The FeFET Temperature Reliability: Endurance and Retention 8.4. The Impact of Ferroelectric Wakeup on the FeFET Memory Reliability 8.5. Summary 9. Closure: What this Thesis has Solved? 9.1. How material selection/development influence the FeFET? 9.2. Why the FeFET Still Operates at High Write Conditions? 9.3. Why the FeFET Endurance is still a Challenge? 9.4. Can the FeFET become Multi-bit Storage Memory? 9.5. How the Scalability Determine FeFET Chances? 10. Summary 11. Bibliography List of symbols and abbreviations List of Publications Acknowledgment Erklärung
3

Resistive switching in BiFeO3-based thin films and reconfigurable logic applications

You, Tiangui 28 October 2016 (has links) (PDF)
The downscaling of transistors is assumed to come to an end within the next years, and the semiconductor nonvolatile memories are facing the same physical downscaling challenge. Therefore, it is necessary to consider new computing paradigms and new memory concepts. Resistive switching devices (also referred to as memristive switches) are two-terminal passive device, which offer a nonvolatile switching behavior by applying short bias pulses. They have been considered as one of the most promising candidates for next generation memory and nonvolatile logic applications. They provide the possibility to carry out the information processing and storage simultaneously using the same resistive switching device. This dissertation focuses on the fabrication and characterization of BiFeO3 (BFO)-based metal-insulator-metal (MIM) devices in order to exploit the potential applications in nonvolatile memory and nonvolatile reconfigurable logics. Electroforming-free bipolar resistive switching was observed in MIM structures with BFO single layer thin film. The resistive switching mechanism is understood by a model of a tunable bottom Schottky barrier. The oxygen vacancies act as the mobile donors which can be redistributed under the writing bias to change the bottom Schottky barrier height and consequently change the resistance of the MIM structures. The Ti atoms diffusing from the bottom electrode act as the fixed donors which can effectively trap and release oxygen vacancies and consequently stabilize the resistive switching characteristics. The resistive switching behavior can be engineered by Ti implantation of the bottom electrodes. MIM structures with BiFeO3/Ti:BiFeO3 (BFO/BFTO) bilayer thin films show nonvolatile resistive switching behavior in both positive and negative bias range without electroforming process. The resistance state of BFO/BFTO bilayer structures depends not only on the writing bias, but also on the polarity of reading bias. For reconfigurable logic applications, the polarity of the reading bias can be used as an additional logic variable, which makes it feasible to program and store all 16 Boolean logic functions simultaneously into the same single cell of BFO/BFTO bilayer MIM structure in three logic cycles. / Die Herunterskalierung von Transistoren für die Informationsverarbeitung in der Halbleiterindustrie wird in den nächsten Jahren zu einem Ende kommen. Auch die Herunterskalierung von nichtflüchtigen Speichern für die Informationsspeicherung sieht ähnlichen Herausforderungen entgegen. Es ist daher notwendig, neue IT-Paradigmen und neue Speicherkonzepte zu entwickeln. Das Widerstandsschaltbauelement ist ein elektrisches passives Bauelement, in dem ein der Widerstand mittels elektrischer Spannungspulse geändert wird. Solche Widerstandsschaltbauelemente zählen zu den aussichtsreichsten Kandidaten für die nächste Generation von nichtflüchtigen Speichern sowie für eine rekonfigurierbare Logik. Sie bieten die Möglichkeit zur gleichzeitigen Informationsverarbeitung und -speicherung. Der Fokus der vorliegenden Arbeit liegt bei der Herstellung und der Charakterisierung von BiFeO 3 (BFO)-basierenden Metal-insulator-Metall (MIM) Strukturen, um zukünftig deren Anwendung in nichtflüchtigen Speichern und in rekonfigurierbaren Logikschaltungen zu ermöglichen. Das Widerstandsschalten wurde in MIM-Strukturen mit einer BFO-Einzelschicht untersucht. Ein besonderes Merkmal von BFO-basierten MIM-Strukturen ist es, dass keine elektrische Formierung notwendig ist. Der Widerstandsschaltmechnismus wird durch das Modell einer variierten Schottky-Barriere erklärt. Dabei dienen Sauerstoff-Vakanzen im BFO als beweglichen Donatoren, die unter der Wirkung eines elektrischen Schreibspannungspulses nichtflüchtig umverteilt werden und die Schottky-Barriere des Bottom-Metallkontaktes ändern. Dabei spielen die während der Herstellung von BFO substitutionell eingebaute Ti-Donatoren in der Nähe des Bottom-Metallkontaktes eine wesentliche Rolle. Die Ti-Donatoren fangen Sauerstoff-Vakanzen beim Anlegen eines positiven elektrischen Schreibspannungspulses ein oder lassen diese beim Anlegen eines negativen elektrischen Schreibspannungspules wieder frei. Es wurde gezeigt, dass die Ti-Donatoren auch durch Ti-Implantation der Bottom-Elektrode in das System eingebracht werden können. MIM-Strukturen mit BiFeO 3 /Ti:BiFeO 3 (BFO/BFTO) Zweischichten weisen substitutionell eingebaute Ti-Donatoren sowohl nahe der Bottom-Elektrode als auch nahe der Top-Elektrode auf. Sie zeigen nichtflüchtiges, komplementäres Widerstandsschalten mit einer komplementär variierbaren Schottky-Barriere an der Bottom-Elektrode und an der Top-Elektrode ohne elektrische Formierung. Der Widerstand der BFO/BFTO-MIM-Strukturen hängt nicht nur von der Schreibspannung, sondern auch von der Polarität der Lesespannung ab. Für die rekonfigurierbaren logischen Anwendungen kann die Polarität der Lesespannung als zusätzliche Logikvariable verwendet werden. Damit gelingt die Programmierung und Speicherung aller 16 Booleschen Logik-Funktionen mit drei logischen Zyklen in dieselbe BFTO/BFO MIM-Struktur.
4

Resistive switching in BiFeO3-based thin films and reconfigurable logic applications

You, Tiangui 25 October 2016 (has links)
The downscaling of transistors is assumed to come to an end within the next years, and the semiconductor nonvolatile memories are facing the same physical downscaling challenge. Therefore, it is necessary to consider new computing paradigms and new memory concepts. Resistive switching devices (also referred to as memristive switches) are two-terminal passive device, which offer a nonvolatile switching behavior by applying short bias pulses. They have been considered as one of the most promising candidates for next generation memory and nonvolatile logic applications. They provide the possibility to carry out the information processing and storage simultaneously using the same resistive switching device. This dissertation focuses on the fabrication and characterization of BiFeO3 (BFO)-based metal-insulator-metal (MIM) devices in order to exploit the potential applications in nonvolatile memory and nonvolatile reconfigurable logics. Electroforming-free bipolar resistive switching was observed in MIM structures with BFO single layer thin film. The resistive switching mechanism is understood by a model of a tunable bottom Schottky barrier. The oxygen vacancies act as the mobile donors which can be redistributed under the writing bias to change the bottom Schottky barrier height and consequently change the resistance of the MIM structures. The Ti atoms diffusing from the bottom electrode act as the fixed donors which can effectively trap and release oxygen vacancies and consequently stabilize the resistive switching characteristics. The resistive switching behavior can be engineered by Ti implantation of the bottom electrodes. MIM structures with BiFeO3/Ti:BiFeO3 (BFO/BFTO) bilayer thin films show nonvolatile resistive switching behavior in both positive and negative bias range without electroforming process. The resistance state of BFO/BFTO bilayer structures depends not only on the writing bias, but also on the polarity of reading bias. For reconfigurable logic applications, the polarity of the reading bias can be used as an additional logic variable, which makes it feasible to program and store all 16 Boolean logic functions simultaneously into the same single cell of BFO/BFTO bilayer MIM structure in three logic cycles. / Die Herunterskalierung von Transistoren für die Informationsverarbeitung in der Halbleiterindustrie wird in den nächsten Jahren zu einem Ende kommen. Auch die Herunterskalierung von nichtflüchtigen Speichern für die Informationsspeicherung sieht ähnlichen Herausforderungen entgegen. Es ist daher notwendig, neue IT-Paradigmen und neue Speicherkonzepte zu entwickeln. Das Widerstandsschaltbauelement ist ein elektrisches passives Bauelement, in dem ein der Widerstand mittels elektrischer Spannungspulse geändert wird. Solche Widerstandsschaltbauelemente zählen zu den aussichtsreichsten Kandidaten für die nächste Generation von nichtflüchtigen Speichern sowie für eine rekonfigurierbare Logik. Sie bieten die Möglichkeit zur gleichzeitigen Informationsverarbeitung und -speicherung. Der Fokus der vorliegenden Arbeit liegt bei der Herstellung und der Charakterisierung von BiFeO 3 (BFO)-basierenden Metal-insulator-Metall (MIM) Strukturen, um zukünftig deren Anwendung in nichtflüchtigen Speichern und in rekonfigurierbaren Logikschaltungen zu ermöglichen. Das Widerstandsschalten wurde in MIM-Strukturen mit einer BFO-Einzelschicht untersucht. Ein besonderes Merkmal von BFO-basierten MIM-Strukturen ist es, dass keine elektrische Formierung notwendig ist. Der Widerstandsschaltmechnismus wird durch das Modell einer variierten Schottky-Barriere erklärt. Dabei dienen Sauerstoff-Vakanzen im BFO als beweglichen Donatoren, die unter der Wirkung eines elektrischen Schreibspannungspulses nichtflüchtig umverteilt werden und die Schottky-Barriere des Bottom-Metallkontaktes ändern. Dabei spielen die während der Herstellung von BFO substitutionell eingebaute Ti-Donatoren in der Nähe des Bottom-Metallkontaktes eine wesentliche Rolle. Die Ti-Donatoren fangen Sauerstoff-Vakanzen beim Anlegen eines positiven elektrischen Schreibspannungspulses ein oder lassen diese beim Anlegen eines negativen elektrischen Schreibspannungspules wieder frei. Es wurde gezeigt, dass die Ti-Donatoren auch durch Ti-Implantation der Bottom-Elektrode in das System eingebracht werden können. MIM-Strukturen mit BiFeO 3 /Ti:BiFeO 3 (BFO/BFTO) Zweischichten weisen substitutionell eingebaute Ti-Donatoren sowohl nahe der Bottom-Elektrode als auch nahe der Top-Elektrode auf. Sie zeigen nichtflüchtiges, komplementäres Widerstandsschalten mit einer komplementär variierbaren Schottky-Barriere an der Bottom-Elektrode und an der Top-Elektrode ohne elektrische Formierung. Der Widerstand der BFO/BFTO-MIM-Strukturen hängt nicht nur von der Schreibspannung, sondern auch von der Polarität der Lesespannung ab. Für die rekonfigurierbaren logischen Anwendungen kann die Polarität der Lesespannung als zusätzliche Logikvariable verwendet werden. Damit gelingt die Programmierung und Speicherung aller 16 Booleschen Logik-Funktionen mit drei logischen Zyklen in dieselbe BFTO/BFO MIM-Struktur.
5

Reconfigurable Si Nanowire Nonvolatile Transistors

Park, So Jeong, Jeon, Dae-Young, Piontek, Sabrina, Grube, Matthias, Ocker, Johannes, Sessi, Violetta, Heinzig, André, Trommer, Jens, Kim, Gyu-Tae, Mikolajick, Thomas, Weber, Walter M. 17 August 2022 (has links)
Reconfigurable transistors merge unipolar p- and n-type characteristics of field-effect transistors into a single programmable device. Combinational circuits have shown benefits in area and power consumption by fine-grain reconfiguration of complete logic blocks at runtime. To complement this volatile programming technology, a proof of concept for individually addressable reconfigurable nonvolatile transistors is presented. A charge-trapping stack is incorporated, and four distinct and stable states in a single device are demonstrated.

Page generated in 0.0394 seconds