11 |
Electropermutation assisted by ion-exchange textile : removal of nitrate from drinking waterDanielsson, Carl-Ola January 2006 (has links)
Increased levels of nitrate in ground water have made many wells unsuitable as sources for drinking water. In this thesis an ion-exchang eassisted electromembrane process, suitable for nitrate removal, is investigated both theoretically and experimentally. An ion-exchange textile material is introduced as a conducting spacer in the feed compartment of an electropermutation cell. The sheet shaped structure of the textile makes it easy to incorporate into the cell. High permeability and fast ion-exchange kinetics, compared to ion-exchange resins, are other attractive features of the ion-exchange textile. A steady-state model based on the conservation of the ionic species is developed. The governing equations on the microscopic level are volume averaged to give macro-homogeneous equations. The model equations are analyzed and relevant simplifications are motivated and introduced. Dimensionless parameters governing the continuous electropermutation process are identified and their influence on the process are discussed. The mathematical model can be used as a tool when optimising the process parameters and designing equipment. An experimental study that aimed to show the positive influence of using the ion-exchange textile in the feed compartment of an continuous electropermutation process is presented. The incorporation of the ion-exchange textile significantly improves the nitrate removal rate at the same time as the power consumption is decreased. A superficial solution of sodium nitrate with a initial nitrate concentration of 105 ppm was treated. A product stream with less than 20 ppm nitrate could be obtained, in a single pass mode of operation. Its concluded from these experiments that continuous electropermutation using ion-exchange textile provides an interesting alternative for nitrate removal, in drinking water production. The predictions of the mathematical model are compared with experimental results and a good agreement is obtained. Enhanced water dissociation is known to take place at the surface of ion-exchange membranes in electromembrane processes operated above the limiting current density. A model for this enhanced water dissociation in presented in the thesis. The model makes it possible to incorporate the effect of water dissociation as a heterogeneous surface reaction. Results from simulations of electropermutation with and without ion-exchange textile incorporated are presented. The influence of the water dissociation is investigated with the developed model. / QC 20101118
|
12 |
Electropermutation assisted by ion-exchange textile : removal of nitrate from drinking waterDanielsson, Carl-Ola January 2006 (has links)
<p>Increased levels of nitrate in ground water have made many wells unsuitable as sources for drinking water. In this thesis an ion-exchang eassisted electromembrane process, suitable for nitrate removal, is investigated both theoretically and experimentally. An ion-exchange textile material is introduced as a conducting spacer in the feed compartment of an electropermutation cell. The sheet shaped structure of the textile makes it easy to incorporate into the cell. High permeability and fast ion-exchange kinetics, compared to ion-exchange resins, are other attractive features of the ion-exchange textile.</p><p>A steady-state model based on the conservation of the ionic species is developed. The governing equations on the microscopic level are volume averaged to give macro-homogeneous equations. The model equations are analyzed and relevant simplifications are motivated and introduced. Dimensionless parameters governing the continuous electropermutation process are identified and their influence on the process are discussed. The mathematical model can be used as a tool when optimising the process parameters and designing equipment.</p><p>An experimental study that aimed to show the positive influence of using the ion-exchange textile in the feed compartment of an continuous electropermutation process is presented. The incorporation of the ion-exchange textile significantly improves the nitrate removal rate at the same time as the power consumption is decreased. A superficial solution of sodium nitrate with a initial nitrate concentration of 105 ppm was treated. A product stream with less than 20 ppm nitrate could be obtained, in a single pass mode of operation. Its concluded from these experiments that continuous electropermutation using ion-exchange textile provides an interesting alternative for nitrate removal, in drinking water production. The predictions of the mathematical model are compared with experimental results and a good agreement is obtained.</p><p>Enhanced water dissociation is known to take place at the surface of ion-exchange membranes in electromembrane processes operated above the limiting current density. A model for this enhanced water dissociation in presented in the thesis. The model makes it possible to incorporate the effect of water dissociation as a heterogeneous surface reaction. Results from simulations of electropermutation with and without ion-exchange textile incorporated are presented. The influence of the water dissociation is investigated with the developed model.</p>
|
13 |
Remo??o biol?gica de nitrato em ?gua de abastecimento humano utilizando o endocarpo de coco como fonte de carbonoTorres, Rafael Melo 22 August 2011 (has links)
Made available in DSpace on 2014-12-17T15:03:27Z (GMT). No. of bitstreams: 1
RafaelM_DISSERT.pdf: 1989956 bytes, checksum: 4d567b87a39f4ad9191e5a5c7decf060 (MD5)
Previous issue date: 2011-08-22 / The groundwater quality has been compromised as a result of the intensification of human activities over the years. Groundwater contamination by nitrate is one of the
effects of this degradation, a socio-environmental problem that affects many regions of the world and particular the city of Natal (RN). Developing techniques for nitrate
removal in water is intended to eliminate or reduce the concentration of this compound, and those that involve biological processes have produced economic and
environmental advantages. This study proposes a technology for biological removal of nitrate in water supply for humans, using the endocarp s coconut as a carbon source and bacteria support. The experiments were performed in pilot scale anoxic,
testing different areas of the substrate surface. Results showed high rates nitrate removal during the monitoring period, noting the occurrence of denitrification after the beginning of system operation. The best performance was achieved in the treatment
system containing substrate surface area increased, indicating that the decrease in the endocarp size contributed to increased bacterial activity, improving the ability to remove nitrate. About the quality analyzed aspects of water, it was found that the
proposed technology has the potential water use for human consumption / A qualidade da ?gua subterr?nea vem sendo cada vez mais comprometida como consequ?ncia da intensifica??o das a??es antr?picas ao longo dos anos. Um dos efeitos dessa degrada??o ? a contamina??o dos mananciais subterr?neos por
nitrato, um problema s?cio-ambiental que atinge diversas regi?es do mundo e, em particular, a cidade do Natal (RN). T?cnicas para remo??o de nitrato em ?guas t?m
sido desenvolvidas a fim de eliminar, ou reduzir, a concentra??o deste composto, sendo que, as que envolvem processos biol?gicos t?m apresentado vantagens econ?micas e ambientais. Esse estudo prop?e uma tecnologia de remo??o biol?gica do nitrato em ?gua de abastecimento humano, utilizando o endocarpo de coco como fonte de carbono e suporte bacteriano. Os experimentos foram realizados em
c?maras an?xicas em escala piloto, testando diferentes ?reas superficiais do substrato. Os resultados mostraram elevadas taxas de remo??o de nitrato ao longo do per?odo de monitoramento, observando a ocorr?ncia da desnitrifica??o logo ap?s o in?cio do funcionamento do sistema. O melhor desempenho foi alcan?ado no sistema de tratamento contendo substrato de maior ?rea superficial, indicando que a
diminui??o no tamanho do endocarpo contribuiu com o aumento da atividade bacteriana, melhorando a capacidade de remo??o de nitrato. Quanto ? qualidade da ?gua analisada, verificou-se que a tecnologia proposta tem potencialidade de uso da
?gua para consumo humano
|
14 |
Exploring a Lab-scale Cascade Upflow Bioreactor System for Nitrogen Removal Via Biosorption Activated MediaRobles Lecompte, Alejandra 01 January 2023 (has links) (PDF)
Many Best Management Practices (BMPs) have been developed to reduce excessive nutrients in stormwater runoff and mitigate harmful algal blooms in downstream receiving water bodies. This study demonstrates a new BMP by comparing two green sorption media (i.e., specialty adsorbents) for nutrient removal in cascade upflow biofiltration systems operated in parallel. The proposed filtration technology can control hydraulic gradients, prevent clogging and settlements, and increase hydraulic loading while removing more nutrients in an integrated physicochemical and microbiological treatment process. The two green sorption media being tested in this study include zero-valent-iron and perlite-based green sorption media (ZIPGEM) and biochar, iron, and perlite-integrated green sorption media (BIPGEM). BIPGEM or ZIPGEM was installed in two identical upflow bioreactors operated in sequence within each biofiltration system compared mainly for nitrate removal at three influent conditions for process reliability assessment. In addition, kinetics studies were conducted and analyzed to improve the understanding of reactor design. Dissolved organic nitrogen was monitored by using FT-ICR MS (Fourier transform ion cyclotron resonance mass spectrometer) whereas population dynamics of nitrifiers and denitrifiers were quantified by using RT-PCR (real time polymerase chain reaction). The process reliability was compared and confirmed based on the nitrate removal efficiencies, microbial population, and oxidation-reduction potential variations across the two biofiltration systems with different green sorption media. Results indicated that ZIPGEM performed slightly better than BIPGEM and the two identical upflow bioreactors operated in sequence within each biofiltration system exhibited steady operation with higher hydraulic loading relative to the downflow settings in the literature.
|
15 |
Potential of waste-derived VFAs-bearing effluents as an external carbon source for MBBR denitrification of domestic wastewater / Potentialen av avfallshärledda VFA-bärande substrat som en extern kolkälla för MBBR-denitrifiering av avloppsvattenManafi Khosroshahi, Seyed Reza January 2022 (has links)
In conventional wastewater treatment plants, methanol, ethanol, and acetate are used as carbon source for the denitrification process in the biological nutrient removal. However, growing concern regarding economical costs and carbon footprints from the fossil-based production of these chemicals have forced the companies to look for other alternatives. VFAs have shown a great potential in replacing the conventionally used carbon sources. If implemented this will result in lower chemical cost and a drastic decrease in carbon footprint as well as striving WWTPs towards sustainable development. In this work denitrification has been analysed using different variations of VFAs such as fermented potato protein liquor, food waste and chicken manure VFA. This was done using a basic laboratory setup of a denitrification reactor which used basic stirring agitation and nitrogen purging to ensure anoxic conditions. Nutrients and excess sCOD were added to ensure the highest denitrification rates. The denitrifying biomass was collected at Gryaab AB in the form of k1-carriers making this process a MBBR. The most influential characteristic of the VFAs is the distribution of the acids in the VFA effluent. Butyric acid along with caproic acid showed the best potential for efficient denitrification. The possibility of concentration of VFA effluent showed a high potential when using a nanofiltration system. A C/N ratio of 4.5 conventionally used when methanol is added showed to be the most optimal condition for VFA addition. The combination of VFAs together with conventional used carbon sources showed the best potential in denitrification efficiency proving to be as good or even better than pure synthetic ones. VFAs effluents showed the best potential in removing the intermediate nitrite from the wastewater at high rates. Overall, VFAs shown a great potential for replacing conventionally used carbon sources, demonstrating the potential of substitution, which if implemented will result in lower carbon footprint and a strive towards sustainable development.
|
16 |
Cumulative Impacts of Stream Restoration on Watershed-Scale Flood Attenuation, Floodplain Inundation, and Nitrate RemovalGoodman, Lucas M. 01 1900 (has links)
Severe flooding and excess nutrient pollution, exacerbated by heightened anthropogenic pressures (e.g., climate change, urbanization, land use change, unsustainable agricultural practices), have been detrimental to riverine systems and their estuaries. The degradation of riverine systems can negatively impact human and environmental health, as well as local, regional, and even global economies. Floods provide beneficial ecosystem services (e.g., processing pollutants, transferring nutrients and sediment, supporting biodiversity), but they can also damage infrastructure and result in the loss of human life. Meanwhile, eutrophication can cause anoxic dead zones, harming aquatic ecosystems and public health. To address the issues facing riverine systems, focus has shifted to watershed-scale management plans. However, it can prove challenging to quantify the cumulative impacts of multiple stream restoration projects within a single watershed on flooding and nutrient removal. Previous studies have quantified the effects of stream restoration on flood attenuation. However, our first study fills a substantial knowledge gap by evaluating the impacts of different floodplain restoration practices, varied by location and length, on flood attenuation and floodplain inundation dynamics at the watershed scale during more frequent storm recurrence intervals (i.e., 2-year, 1-year, 0.5-year, and monthly). We created a 1D HEC-RAS model to simulate the effects of Stage 0 restoration within a 4th-order generic watershed based on the Chesapeake Bay watershed. By varying the percent river length restored and location, we found that Stage 0 restoration, especially in 2nd-order rivers, can be particularly effective at enhancing flood attenuation and floodplain inundation locally and farther downstream. We addressed the water quality component by using a random forest machine learning approach coupled with artificial neural networks to find trends and predict nitrate removal rates associated with spatial, temporal, hydrologic, and restoration features. Our results showed that hydrologic conditions were the most important variable for predicting actual nitrate removal rates. Overall, both studies demonstrate the importance of hydrologic connectivity for flood attenuation, channel-floodplain exchange, and nutrient processing. / Maryland Department of Natural Resources; National Fish and Wildlife Foundation through the U.S. Environmental Protection Agency’s Chesapeake Bay Program Office; Chesapeake Bay Trust / Master of Science / Severe flooding and nutrient pollution from sources such as urban and agricultural runoff have been detrimental to the health of rivers. The degradation of rivers can negatively impact human and environmental health, as well as local, regional, and even global economies. Floods can be both helpful, by providing water quality benefits and supporting wildlife, and harmful, causing damage and even loss of life. Excess nutrients, such as nitrogen, can create underwater zones void of life, with serious consequences for aquatic life and public health. To address the flooding and water quality issues facing rivers, focus has shifted to landscapelevel river network management plans. However, it can prove challenging to understand the impacts of multiple stream restoration projects within a larger river network on flooding and nutrient removal. We address the flooding component by using a model to simulate the effects of different floodplain restoration techniques on a medium-sized watershed that is generally based on streams that flow into the Chesapeake Bay. Our model simulated small, relatively frequent storm events that, on average, occur every two years to once a month. By varying restoration length and location, we found that restoration practices with lower streambanks can be particularly effective at slowing down floods, reducing their overall severity by allowing more water to access the floodplains. This was especially true when restoration occurred in smaller streams, and the effects were seen both locally and farther downstream. We address the water quality component by using a different model to find patterns and predict nutrient removal rates associated with different landscape, seasonal, storm event, and restoration features. Our results showed that the most important variable for predicting nutrient removal rates was whether a stream was experiencing normal flow or stormflow conditions. Overall, both studies demonstrate the importance of restoring rivers in a manner that encourages water to flow from the channel into the floodplains during smaller storm events, because this will reduce the severity of downstream flooding while simultaneously improving water quality.
|
17 |
Furnitura multipla di servizi ecosistemici da culture energetiche poliennali / MULTIPLE ECOSYSTEM SERVICES PROVISION FROM PERENNIAL BIOENERGY CROPS / Multiple ecosystem services provision from perennial bioenergy cropsFERRARINI, ANDREA 17 March 2016 (has links)
La sfida nel 21esimo secolo è quella di fornire cibo e energia ad un mondo in continua crescita demografica e allo stesso tempo conservare l’ambiente. In questa tesi uno scenario alternativo di uso del suolo per la produzione di bioenergia è stato testato: le fasce tampone bioenergetiche. Considerate le problematiche ambientali legate al trilemma “cibo-energia-ambiente”, la struttura del Millennium Ecosystem Assessment sui servizi ecosistemici (SE) fornisce l’opportunità di esaminare l’impatto ambientale di questo nuovo scenario bioenergetico. In questa tesi ho mirato a determinare in che misura le colture bioenergetiche poliennali influenzino la fornitura multipla di SE quando coltivate come fasce tampone. Per raggiungere questo obiettivo, ho combinato una revisione sistematica della letteratura sui SE forniti da colture energetiche poliennali (CEP) con una prova sperimentale su fasce tampone bioenergetiche.
Applicando una metodologia di attribuzione di punteggi agli impatti sui SE estratti dal materiale bibliografico raccolto, ho mostrato come coltivando le CEP lungo i margini dei campi coltivati esista una grande opportunità per sostenere la fornitura multipla di SE. La coltivazione delle CEP come fasce tampone adiacenti a campi agricoli può migliorare i SE di regolazione del clima, dell’acqua e della biodiversità, sostenere la salute del suolo e fornire biomassa dedicata alla produzione di bioenergia. Al contrario, la conversione di margini di campo di prati stabili ha mostrato un impatto netto negativo sulla fornitura multipla di SE.
Tuttavia, due sono i principali svantaggi che sono stati individuati relativamente alla creazione e alla gestione delle fasce tampone bioenergetiche. Primo, diversi sono i fattori sito-specifici di tipo idro-pedologico lungo i margini dei campi che devono essere tenuti in considerazione poiché possono avere un impatto negativo sull’affrancamento delle colture e la loro produttività a medio-lungo termine. Secondo, riguardo la catena di approvvigionamento della biomassa, uno spazio di lavoro limitato per le macchine agricole è stato riconosciuto come principale inconveniente per le fasce tampone bioenergetiche rispetto alle CEP coltivate in pieno campo. Questo limite logistico di natura spaziale può inevitabilmente incrementare i tempi e le operazioni di taglio e raccolta della biomassa e quindi in ultima il consumo di combustili fossili.
Grazie ad una prova sperimentale su fasce tampone bioenergetiche condotta in un terreno sabbioso-limoso con falda acquifera poco profonda contaminata da nitrati di origine agricola, si è dimostrato come fasce tampone coltivate con miscanto e salice siano in grado di intercettare e rimuovere i nitrati in falda (>60%) tanto quanto fasce tampone con specie avventizie. CEP come miscanto e salice, grazie ai loro apparati radicali profondi, hanno mostrato essere in grado di promuovere delle relazioni pianta-suolo-microorganismi lungo l’intero profilo del suolo utili ai fini ambientali delle fasce tampone bioenergetiche. Infatti, negli strati più profondi, una maggiore biomassa radicale ha portato le CEP a superare le specie avventizie in termini di rimozione biologica dei nitrati dal suolo e mitigazione potenziale dei gas serra. Inoltre, i risultati relativi alla produzione di biomassa e le asportazioni di N legata alla fase di raccolta hanno confermato ulteriormente come la coltivazione di CEP lungo i corsi d’acqua sia una strategia win-win: produzione di biomassa e protezione dell’ambiente.
In conclusione, il potenziale rivelato dalle CEP in termini di fornitura multipla di SE suggerisce che la loro coltivazione, come elementi paesaggistici perenni in posizioni strategiche all'interno di paesaggio agricolo, è un'opzione promettente per promuovere l'intensificazione ecologicamente sostenibile degli agroecosistemi. / The 21st century will challenge agriculture to feed and fuel a growing world while conserving the environment. In this thesis an alternative bioenergy land use scenario to the conversion of marginal land has been tested: the bioenergy buffers. Given the environmental issues related to “food-energy-environment” trilemma, the Millennium Ecosystem Assessment framework on ES provides an opportunity to examine the environmental impacts of this new bioenergy land use scenario. In this thesis I aimed to determine to what extent do the perennial bioenergy crops affect the delivery of multiple ES when cultivated as bioenergy buffers. To reach this aim, I combined a systematic revision of literature on ES provided by perennial bioenergy crops with a field experiment on bioenergy buffers.
Applying an impact scoring methodology to the effects on ES extracted from literature, I showed that, cultivating perennial bioenergy crops along field margins of former croplands offer a great opportunity to sustain the provision of multiple ES. The cultivation of perennial bioenergy crops on field margins can improve climate, biodiversity and water regulation services, sustain soil health and provide biomass for energetic purposes. On the contrary, grassland conversion showed a net negative impact on multiple ES provision.
Nevertheless, I found two main shortcomings related to bioenergy buffers establishment and management. First, several site-specific factors along field margins must be taken into account, because they can affect crop establishment and buffers long-term productivity. Second, regarding to biomass supply chain, a limited working space for the farm machinery operations has been recognized as the main disadvantages of bioenergy buffers compared to large-scale bioenergy plantations. This spatial logistics constraint may inevitably increase harvest and collection operation times and fossil fuel consumption.
Conducting a field experiment with bioenergy buffers in a nitrate-enriched shallow groundwater, I showed that miscanthus and willow buffers are able to efficiently intercept and remove from groundwater the incoming NO3-N as much as buffer strips with spontaneous species. Yet, due to their deep rooting systems, bioenergy buffers promote significant plant-microbial linkages along the soil profile. At deeper soil layers, a higher fine root biomass led perennial bioenergy crops to outperform patches of adventitious vegetation in terms of biological N removal from soil and belowground GHG mitigation potential. The results on biomass production and N removal via harvesting further confirmed that the cultivation of perennial bioenergy crops along watercourses is an effective win-win strategy: biomass production and protection of the environment.
In conclusion, the revealed potential of perennial bioenergy crops on multiple ES provision implies that their cultivation as perennial landscape elements in strategic locations within landscape is a promising option to promote the ecological sustainable intensification of agroecosystems.
|
Page generated in 0.0548 seconds