• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 781
  • 758
  • 61
  • 58
  • 24
  • 21
  • 21
  • 15
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 8
  • Tagged with
  • 2008
  • 2008
  • 679
  • 659
  • 312
  • 168
  • 136
  • 127
  • 123
  • 121
  • 118
  • 96
  • 96
  • 95
  • 95
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
521

The Roles of Nitric Oxide, Oxidative Stress, and Angiotensin II Type 1 Receptor in Regulating Cutaneous Blood Flow and Sweating During Prolonged Exercise in the Heat with and without Fluid Replacement

McNeely, Brendan January 2017 (has links)
The current study evaluated whether NO synthase (NOS) contributes to cutaneous vasodilation and sweating during prolonged exercise in the heat. In addition, we determined if prolonged exercise-induced increases in reactive oxygen species (ROS) and activation of angiotensin II type 1 receptors (AT1R) impair heat loss responses. On two separate days, eleven young men completed 90-min of continuous cycling at ~600W of metabolic heat production followed by 40-min of recovery in the heat (40ºC). To evaluate the role of excess fluid loss via sweating, participants completed a second session of the same protocol while receiving fluid replacement (FR) determined during the first session (No-FR). Cutaneous vascular conductance (CVC) and local sweat rate (LSR) were measured at four intradermal microdialysis forearm sites perfused with either: (1) lactated Ringer (Control); (2) 10 mM NG-nitro-L-arginine methyl ester (L-NAME, NOS inhibition); (3) 10 mM ascorbate (non-selective anti-oxidant); or (4) 4.34 nM Losartan (AT1R inhibition). Ascorbate treatment increased CVC at 60- and 90-min of exercise versus Control during the FR (P < 0.02), but not the No-FR condition (P > 0.31). CVC was reduced at the L-NAME treated site (P < 0.02), but was not different relative to Control at the Losartan treated site (P > 0.19) irrespective of condition. LSR did not differ between sites or as a function of condition (all P > 0.10). We conclude that NO regulates cutaneous vasodilation but not sweating, irrespective of fluid replacement, and ascorbate sensitive ROS impair cutaneous vasodilation during prolonged exercise in the heat with FR.
522

Effect of Arginine and Oscillatory Ca2+ on Vascular Response Mediated Via Nitric Oxide Signaling in Normal and Salt Sensitive Hypertensive Rat Mesenteric Arterioles

Gadkari, Tushar V 28 February 2013 (has links)
Hypertension, a major risk factor in the cardiovascular system, is characterized by an increase in the arterial blood pressure. High dietary sodium is linked to multiple cardiovascular disorders including hypertension. Salt sensitivity, a measure of how the blood pressure responds to salt intake is observed in more than 50% of the hypertension cases. Nitric Oxide (NO), as an endogenous vasodilator serves many important biological roles in the cardiovascular physiology including blood pressure regulation. The physiological concentrations for NO bioactivity are reported to be in 0-500 nM range. Notably, the vascular response to NO is highly regulated within a small concentration spectrum. Hence, much uncertainty surrounds how NO modulates diverse signaling mechanisms to initiate vascular relaxation and alleviate hypertension. Regulating the availability of NO in the vasculature has demonstrated vasoprotective effects. In addition, modulating the NO release by different means has proved to restore endothelial function. In this study we addressed parameters that regulated NO release in the vasculature, in physiology and pathophysiology such as salt sensitive hypertension. We showed that, in the rat mesenteric arterioles, Ca2+ induced rapid relaxation (time constants 20.8 ± 2.2 sec) followed with a much slower constriction after subsequent removal of the stimulus (time constants 104.8 ± 10.0 sec). An interesting observation was that a fourfold increase in the Ca2+ frequency improved the efficacy of arteriolar relaxation by 61.1%. Our results suggested that, Ca2+ frequency-dependent transient release of NO from the endothelium carried encoded information; which could be translated into different steady state vascular tone. Further, Agmatine, a metabolite of L-arginine, as a ligand, was observed to relax the mesenteric arterioles. These relaxations were NO-dependent and occurred via α-2 receptor activity. The observed potency of agmatine (EC50, 138.7 ± 12.1 µM; n=22), was 40 fold higher than L-arginine itself (EC50, 18.3 ± 1.3 mM; n = 5). This suggested us to propose alternative parallel mechanism for L-arginine mediated vascular relaxation via arginine decarboxylase activity. In addition, the biomechanics of rat mesentery is important in regulation of vascular tone. We developed 2D finite element models that described the vascular mechanics of rat mesentery. With an inverse estimation approach, we identified the elasticity parameters characterizing alterations in normotensive and hypertensive Dahl rats. Our efforts were towards guiding current studies that optimized cardiovascular intervention and assisted in the development of new therapeutic strategies. These observations may have significant implications towards alternatives to present methods for NO delivery as a therapeutic target. Our work shall prove to be beneficial in assisting the delivery of NO in the vasculature thus minimizing the cardiovascular risk in handling abnormalities, such as hypertension.
523

Efeito dos agentes de maturação, ABA, PEG e maltose, na produção de óxido nítrico e de espécies reativas de oxigênio em culturas embriogênicas de Araucaria angustifolia / Effect of maturation promoters, ABA, PEG and maltose in the production of nitric oxide and reactive species in Araucaria angustifolia embryogenic cultures

Julia Bolanho da Rosa Andrade 16 August 2010 (has links)
Araucaria angustifolia é uma conífera nativa do Brasil de importância econômica, que, após intenso desmatamento, possui sua distribuição limitada a aproximadamente 3% da área original. Atualmente está incluída na lista de espécies ameaçadas de extinção, na categoria de perigo crítico de acordo com a IUCN (International Union for Conservation of Nature). A embriogênese somática é um processo em que, através da técnica de cultivo in vitro, células isoladas ou um pequeno grupo de células somáticas dão origem a embriões. Este é um sistema com potencial de aplicação em conservação, reflorestamento, propagação em larga escala, e melhoramento vegetal em espécies arbóreas recalcitrantes e em risco de extinção. Um dos principais fatores limitantes, nos sistemas de embriogênese somática em arbóreas, é a baixa freqüência de maturação e conversão de embriões somáticos em plântulas. Durante a fase de maturação, os embriões somáticos acumulam substâncias de reserva, reduzem a atividade metabólica e adquirem tolerância à desidratação. A suplementação do meio de cultura com determinados reguladores de crescimento e agentes osmóticos, os quais permitem a progressão do desenvolvimento normal dos embriões somáticos, promove um estresse hídrico. Esta situação mimetiza aquela que ocorre durante a embriogênese zigótica quando do desenvolvimento da semente. O óxido nítrico (NO) e espécies reativas de oxigênio (ROS) são moléculas que atuam nas respostas das plantas aos vários estresses ambientais e estão envolvidas em processos de desenvolvimento como embriogênese e germinação de sementes, gravitropismo, formação de raízes. Este trabalho teve como objetivo avaliar o efeito de promotores de maturação, ABA e os agentes osmóticos, PEG e maltose, no conteúdo de NO e ROS em culturas embriogênicas de A. angustifolia. Foi observado que os agentes promotores da maturação reduzem a síntese endógena de NO e ROS. Essa redução é dose dependente. Foram pesquisadas duas linhagens de células com diferentes capacidades de maturação. Para as culturas embriogênicas com competência de maturação esses promotores induzem a maturação e nas culturas que não maturam, promovem a morte celular programada. / Araucaria angustifolia is a native conifer of economic importance in Brazil. Due its massive deforestation, this species is now limited to only 3% of the original area. A. angustifolia is currently on the list of endangered species in the category of critically endangered according to IUCN (International Union for Conservation of Nature). Somatic embryogenesis is a process that, through the technique of in vitro culture, isolated cells or a small group of somatic cells gives rise to embryos. This is a system with potential application in conservation, reforestation, large-scale propagation and breeding of tree species . A limiting factor in the systems of somatic embryogenesis in trees is the low frequency of embryo maturation and conversion into plantlets. During the maturation, somatic embryos accumulate storage substances, reduce metabolic activity and acquire tolerance to dehydration. The water stress is made by supplementation of culture medium with growth regulators and osmotic agents, which allow the normal development of somatic embryos. This situation mimics that occurs during development of the seed. Nitric oxide (NO) and reactive oxygen species (ROS) are molecules that act in plant responses to various environmental stresses and are involved in developmental processes such as embryogenesis and seed germination, gravitropism, root formation. This study aimed to evaluate the effect of promoters of maturation, ABA and osmotic agents, PEG and maltose in the generation of NO and ROS in embryogenic cultures of A. angustifolia. It was observed that the promoters of maturation reduces the endogenous synthesis of NO and ROS. We investigated two cell lines with different maturation capacities. For responsive cell line these promoters induce maturation and for blocked cell line, promote programmed cell death.
524

Preventive and Osteoarthritis Suppressive Effects of Peretinoin

Ahmad, Nashrah 21 October 2020 (has links)
No description available.
525

Characterization of Strigolactone Antagonists as Inhibitor of Striga hermonthica Seed Germination and the Discovery of a Nitric Oxide Responsive Protein in Arabidopsis thaliana

Zarban, Randa Alhassan Yahya 11 1900 (has links)
Plants have evolved different communication mechanisms that convey information encoded in chemical signals, both internally and to surrounding organisms. Two such signals are strigolactones (SLs) and nitric oxide (NO). SLs are plant hormones that shape plant architecture according to nutrition availability and mediate interactions with beneficial arbuscular mycorrhizal fungi. For this second purpose, plant roots release SLs into the soil where they also trigger seed germination in root parasitic weeds, such as Striga hermonthica. Attachment of Striga causes severe damage to crops yield, particularly in sub-Saharan Africa. One way to control this threat to food security in infested African regions is to develop SL antagonists, which can inhibit Striga germination. Recently, we have shown that Triton X-100 can bind to the Striga SL-receptor, HYPOSENSITIVE to LIGHT 7 (ShHTL7). In addition, triazole urea compounds have been shown to specifically bind to Oryza sativa SL-receptor DWARF-14 (OsD14), blocking SL signalling. Here we used the structures of Triton X-100 and triazole urea to design two isomers and putative ShHTL7 inhibitors: KK023-N1 and KK023-N2. We demonstrate that these compounds antagonize SL signalling in S. hermonthica via specific binding to ShHTL7, and that application of KK023-N1 results in a 38% reduction in Striga germination under greenhouse conditions. Furthermore, we discovered a histidine residue (H51) in ShHTL7, which may be involved in SL perception in addition to known residues. Substitution of H51 to asparagine (N) led to a significant reduction in ShHTL7 hydrolysis activity, indicating the importance of this H residue. Our work provides a starting point for designing new series of SLs inhibitors to combat Striga, and improve food security worldwide. NO is a gaseous signaling molecule involved in regulating plant development and adaptive responses to biotic and abiotic stresses. In this work, we characterized AtLRB3, a Light Response Bric-a-Brac/Tramtrack/Broad Complex (BTB) family protein, and showed that it contains a Heme Nitric Oxide/Oxygen (H-NOX) domain that can sense NO, providing an evidence of the existence of NO binding proteins in planta.
526

LUNG FAILURE DURING DONOR SUPPORT IS ASSOCIATED WITH A DISRUPTION OF NITRIC OXIDE HOMEOSTASIS IN THE DONOR

Matta, Maroun 07 September 2020 (has links)
No description available.
527

Úloha oxidu dusnatého (NO) v průběhu embryonálního vývoje pokožky drápatky vodní / The role of nitric oxide (NO) during Xenopus laevis embryonic epidermis development

Tománková, Silvie January 2018 (has links)
Nitric oxide (NO) is an interesting molecule, which is involved in many important biological processes such as vasodilatation, neurotransmission, immune response and cell proliferation. This work presents the crucial role of NO during the Xenopus laevis embryonic epidermis development. The outer layer of the embryonic epidermis is composed of 4 cell types (small secretory cells, multi-ciliated cells, ionocytes and goblet cells). Embryonic epidermis composition reflects specialized epithelia such as a respiratory epithelium of mammals. Therefore, Xenopus embryonic epidermis has become a suitable model for the study of human mucosal and mucociliary epithelium and their defects. I found that NO is mainly produced in ionocytes and multi-ciliated cells by using molecular and immunohistochemical approaches. The study of molecular and cellular phenotype changes in embryos with inhibited NO production revealed the necessity of this molecule for correct formation and function of the mucociliary epithelium. NO inhibition caused reduction of specialized epidermal cell types (small secretory cells, ionocytes and multi-ciliated cells) and structural changes in multi-ciliated cells. I also showed that NO affects the development of the embryonic epidermis through the sGC-cGMP-PKG signaling pathway, probably by...
528

Effect of S-nitrosylation on HER2 Protein Expression and Activity

Walia, Yashna January 2021 (has links)
No description available.
529

Reactions of Nitrite With Hemoglobin Measured by Membrane Inlet Mass Spectrometry

Tu, Chingkuang, Mikulski, Rose, Swenson, Erik R., Silverman, David N. 01 January 2009 (has links)
Membrane inlet mass spectrometry was used to observe nitric oxide in the well-studied reaction of nitrite with hemoglobin. The membrane inlet was submerged in the reaction solutions and measured NO in solution via its flux across a semipermeable membrane leading to the mass spectrometer detecting the mass-to-charge ratio m/z 30. This method measures NO directly in solution and is an alternate approach compared with methods that purge solutions to measure NO. Addition to deoxy-Hb(FeII) (near 38 μM heme concentration) of nitrite in a range of 80 μM to16 mM showed no accumulation of either NO or N2O3 on a physiologically relevant time scale with a sensitivity near 1 nM. The addition of nitrite to oxy-Hb(FeII) and met-Hb(FeIII) did not accumulate free NO to appreciable extents. These observations show that for several minutes after mixing nitrite with hemoglogin, free NO does not accumulate to levels exceeding the equilibrium level of NO. The presence of cyanide ions did not alter the appearance of the data; however, the presence of 2 mM mercuric ions at the beginning of the experiment with deoxy-Hb(FeII) shortened the initial phase of NO accumulation and increased the maximal level of free, unbound NO by about twofold. These experiments appear consistent with no role of met-Hb(FeIII) in the generation of NO and an increase in nitrite reductase activity caused by the presumed binding of mercuric to cysteine residues. These results raise questions about the ability of reduction of nitrite mediated by deoxy-Hb(FeII) to play a role in vasodilation.
530

Maternal Lead Exposure Produces Long-Term Enhancement of Dopaminergic Reactivity in Rat Offspring

Szczerbak, Graziyna, Nowak, Przemysław, Kostrzewa, Richard M., Brus, Ryszard 01 October 2007 (has links)
To determine the effect of prenatal lead exposure on brain monoaminergic systems, pregnant rats were given tap water containing 250 ppm lead acetate, for the duration of pregnancy, while tap water without lead (Pb2+) was substituted at birth. Control rats were derived from dams that consumed tap water during pregnancy, and had no exposure to lead afterwards. At 12 weeks after birth, Pb2+ content of brain cortex was increased 3- to 4-fold (P < 0.05). At this time the endogenous striatal levels of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid were 19% lower in Pb2+ exposed rats (P < 0.05), while there was no change in the striatal level of dopamine (DA), noradrenaline, 3,4-dihydroxyphenylglycol, serotonin (5-HT) and 5-hydroxyindoleacetic acid (HPLC/ED). Also there was no change in these monoamines and metabolites in the prefrontal cortex of Pb 2+ exposed rats. However, turnover of 5-HT in prefrontal cortex, as indicated by 5-hydroxytryptophan accumulation 30 min after acute treatment with the decarboxylase inhibitor NSD-1015 (100 mg/kg IP), was lower in the Pb 2+ exposed rats. In the striatum AMPH-induced (1 mg/kg IP) turnover of DA, evidenced as L-DOPA accumulation after NSD-1015, was increased to a lesser extent in the Pb2+ exposed rats (P < 0.05). The nitric oxide synthase inhibitor 7-nitroindazole (10 mg/kg IP) attenuated the latter effect, indicating that neuronal NO mediates this AMPH effect, at least in part. Moreover, DA D2 receptor sensitivity developed in Pb2+ exposed rats, as evidenced by enhanced quinpirole-induced yawning activity and enhanced quinpirole-induced locomotor activity (each, P < 0.05). These findings indicate that ontogenetic exposure to lead can have consequences on monoaminergic neuronal function at an adult stage of life, generally promoting accentuated behavioral effects of direct and indirect monoaminergic agonists, and related to increased dopamine turnover in basal ganglia.

Page generated in 0.0713 seconds