• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 45
  • 27
  • 27
  • 27
  • 27
  • 27
  • 27
  • 13
  • 6
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 193
  • 193
  • 142
  • 41
  • 35
  • 30
  • 22
  • 20
  • 20
  • 19
  • 17
  • 14
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Carbon and nitrogen content of suspended matter in a headwater catchment in Hong Kong

Kong, Shu-piu., 江樹標. January 2005 (has links)
published_or_final_version / abstract / Geography / Master / Master of Philosophy
82

TRANSFORMATIONS OF SELECTED NITROGEN COMPOUNDS AS INFLUENCED BY SALT AND SULFUR (ARIZONA).

MAKTARI, MOHAMMED SAEED. January 1983 (has links)
Two laboratory experiments were conducted to study the effects of salt and nitrogen-sulfur compounds on the transformations of nitrogen in three Arizona soils. In the first experiment the effect of NaCl in concentrations of 0 to 1 m (molal) at moisture levels of 1/3 and 15 bars was studied in the Gila and Laveen loam soils. At 1/3 moisture nitrification of urea-¹⁵N and native soil nitrogen was appreciably reduced only at 1 m salt level. At 15 bars moisture, nitrification was almost completely inhibited by the 1 m salt concentration. Mineralization of soil nitrogen was reduced more by decreasing moisture than by increasing salt concentrations. Ammonia volatilization was increased by both salt and moisture stress and was associated with inhibition of nitrification. Slight effects of salt were observed on ¹⁵N immobilization and ¹⁵N recovery (including volatilization). In the second experiment nitrogen-sulphur combinations (¹⁵N labelled) of KNO₃, KNO₃ + S, urea, urea + S, APS (ammonia polysulfide) and Thiosul (ammonium thiosulfate) were studied at field capacity (FC) and 1.5 FC moistures. In the calcareous Gila soil nitrification was suppressed by the presence of sulfur at 1.5 FC moisture. Volatilization losses were appreciable only from APS. Immobilization of ¹⁵N was greatest from treatments with the higher sulfur rate (elemental S). Denitrification was slightly increased by sulfur at FC, however, at 1.5 FC dramatic losses occurred by denitrification (autotrophic in the presence of sulfur, especially with elemental S. The nitrifying ability of the slightly acid and coarse textured Sonoita soil was low. Nitrification was suppressed more by the presence of sulfur at both moistures. Ammonia volatilization was appreciable from APS followed by urea. ¹⁵N immobilization was high from urea followed by APS. Appreciable losses by denitrification occurred only with APS. The Sonoita soil showed a lower sulfur oxidizing power than the Gila with the only appreciable rate of oxidation from Thiosul followed by APS.
83

Failure of Azotobacter Vinelandii to Fix Nitrogen in Soil

Taeed-Kashani, Taraneh 08 1900 (has links)
It was found that Azotobacter vinelandii grown in a dialyzed soil medium did not fix nitrogen and had a much lower rate of respiration than when grown in Burk's nitrogen-free medium. When para-hydroxybenzoic acid served as the added oxidizable organic carbon source in dialyzed soil medium, the azotobacter grown in it were found to be unable to fix nitrogen. On the other hand, A. vinelandii fixed nitrogen when grown in soil supplemented with glucose. It was concluded that natural conditions in the soil are not conducive to nitrogen fixation by A. vinelandii.
84

A quick test for sulfites on foods and nitrates in drinking water

Markley, Barbara J. January 1986 (has links)
Call number: LD2668 .T4 1986 M375 / Master of Science / Chemistry
85

Espectroscopia de reflectância in situ na avaliação da resposta da adubação nitrogenada em cana-de-açúcar / In situ reflection spectroscopy in the evaluation of the sugarcane nitrogen response

Tavares, Tiago Rodrigues 09 February 2017 (has links)
Na agricultura, técnicas de sensoriamento são um meio prático e barato de se obter informações sobre parâmetros de interesse agronômico, sendo os sensores ópticos uma alternativa para a avaliação da resposta de culturas agrícolas à sua adubação nitrogenada. Para a otimização da eficiência do uso de nitrogênio por culturas agrícolas, algumas estratégias de adubação se baseiam na coleta de dados espectrais em alta frequência no campo, utilizando-os para entender a variabilidade espacial do estado de nutrição da planta com este nutriente. Para a cana-de-açúcar, apesar da efetividade de sensores ópticos em idenificar alguns parâmetros desta cultura, ainda há a dificuldade de estabelecer relações com o seu Teor Foliar de Nitrogênio (TFN). Neste contexto, o presente trabalho acompanhou com sensor óptico hiperespectral (VisNIR) o desenvolvimento do dossel de cana-de-açúcar ao longo de seu ciclo, com o objetivo de avaliar temporalmente a relação entre a sua resposta espectral de reflectância e o seu TFN. Para tanto, foi avaliada uma área experimental com 28 parcelas de cana-deaçúcar, submetidas a tratamentos com diferentes doses de adubação nitrogenada. Ao longo do ciclo da cultura, avaliou-se a sua altura, o TFN e a sua resposta espectral de 400 a 900 nm; ao final do ciclo, foi estimada também a produtividade final de cada parcela. Para a avaliação do comportamento espectral da cultura em função da adubação nitrogenada e de seu desenvolvimento no campo, primeiramente, realizaramse análises de variância (ANOVA) para a altura, o TFN e as diferentes regiões espectrais e, em um segundo momento, análises descritivas e a análise de componentes principais foram conduzidas, ambas sobre os dados espectrais. Em seguida, foram aplicadas diferentes metodologias para a análise quantitativa dos espectros para a predição do TFN. Nessas análises quantitativas, buscou-se avaliar o período ideal do desenvolvimento da cana-de-açúcar para avaliações espectrais de seu TFN serem aplicadas, assim como comprimentos de onda e índices de vegetação (IVs) específicos com relações satisfatórias com o TFN. Os resultados obtidos pelo presente trabalho mostraram possível uma razoável predição do TFN da cana-de-açúcar através de espectroscopia in situ, contudo, esta avaliação só foi possível ao redor de 144 Dias Após o Corte (DAC), momento em que a cultura ainda apresentava resposta do TFN à adubação nitrogenada e no qual o dossel de plantas já estava desenvolvido o suficiente para interromper a influência do solo na leitura espectral. Os IVs avaliados que mais se destacaram para a predição do TFN utilizaram os comprimentos de onda de 490 nm da região do verde; 590 nm da região do laranja; 647 e 652 nm da região do vermelho; 730 nm da região do red-edge; 780 e 880 nm da região do infravermelho próximo. Por fim, o IV que mais se destacou foi o NDRE, índice já sugerido pela literatura com bons resultados para a determinação da biomassa da cana-de-açúcar. / In agriculture, sensing techniques are a practical and inexpensive way to obtain information on agronomic parameters. Optical sensors can be used as a tool to evaluate the response of agricultural crops to nitrogen (N) fertilization. In order to optimize the efficiency of N use in agricultural crops, some fertilization strategies are based on the collection and analysis of high frequency spectral data in the field to understand the spatial variability of N status of plants. Despite the effectiveness of optical sensors in identifying some agronomic parameters of the sugarcane, establishing relations between these data and the Leaf Nitrogen Content (TFN) of the sugarcane is still quite challenging. To address this issue, in this work the development of the sugarcane canopy was monitored during its cycle with a hyperspectral optical sensor (VisNIR), with the aim of evaluating the relations between its spectral reflectance response and its TFN in time. For this, an experimental area with 28 plots of sugarcane submitted to treatments with different doses of nitrogen fertilization was evaluated. Throughout the crop year were evaluated its height, TFN and spectral response from 400 to 900 nm; at the end of the cycle, the final yield of each plot was also evaluated. To begin with, the analysis of variance (ANOVA) for height, TFN and the different spectral regions was performed to assess the spectral behavior of the crop as a function of nitrogen fertilization and its development in the field. Furthermore, a descriptive analysis and analysis of principal components were conducted, both on spectral data. In addition to this, different methodologies were applied for the spectral quantitative analysis for the prediction of TFN. The aim of these quantitative analyses was to determine the ideal period of sugarcane development in order to apply spectral evaluations of its TFN and to find specific wavelengths and Vegetation Index (IVs) with satisfactory relations with the TFN. The results obtained by the present work showed a reasonable prediction of the sugarcane TFN by in situ spectroscopy. However, this evaluation was only possible around 144 Days After Harvest (DAC). During this period, the culture showed a response of the TFN to N fertilization and the canopy of plants was already developed enough to interrupt the influence of the soil in the spectral reading. The evaluated IVs that showed better results for the TFN prediction used the wavelengths 490 nm of the green region; 590 nm of the orange region; 647 and 652 nm of the red region; 730 nm of the red-edge region and; 780 and 880 nm of the near infrared region. The IV that showed the best result for the TFN prediciton was the NDRE, vegetation index, which was already suggested by the literature with good results for the determination the sugarcane biomass.
86

The contribution of earthworm communities to nitrogen cycling in agroecosystems of Québec /

Eriksen-Hamel, Nikita S. January 2007 (has links)
No description available.
87

Soil water and nitrogen dynamics of farming systems on the upper Eyre Peninsula, South Australia

Adcock, Damien Paul January 2005 (has links)
In the semi - arid Mediterranean - type environments of southern Australia, soil and water resources largely determine crop productivity and ultimately the sustainability of farming systems within the region. The development of sustainable farming systems is a constantly evolving process, of which cropping sequences ( rotations ) are an essential component. This thesis focused on two important soil resources, soil water and nitrogen, and studied the effects of different crop sequences on the dynamic of these resources within current farming systems practiced on the upper Eyre Peninsula of South Australia. The hypothesis tested was that : continuous cropping may alter N dynamics but will not necessarily alter water use efficiency in semi - arid Mediterranean - type environments. Continuous cropping altered N - dynamics ; increases in inorganic N were dependent on the inclusion of a legume in the cropping sequence. Associated with the increase in inorganic N supply was a decrease in WUE by the subsequent wheat crop. Overall, estimates of water use efficiency, a common index of the sustainability of farming systems, in this study concur with reported values for the semi - arid Murray - Mallee region of southern Australia and other semi - arid environments worldwide. Soil water balance and determination of WUE for a series of crop sequences in this thesis suggests that the adoption of continuous cropping may increase WUE and confer a yield benefit compared to crop sequences including a legume component in this environment. No differences in total water use ( ET ) at anthesis or maturity were measured for wheat regardless of the previous crop. Soil evaporation ( E [subscript s] ) was significantly affected by crop canopy development, measured as LAI from tillering until anthesis in 2002, however total seasonal E [subscript s] did not differ between crop sequences. Indeed in environments with infrequent rainfall, such as the upper Eyre Peninsula, soil evaporation may be water - limited rather than energy limited and the potential benefits from greater LAI and reduced E [subscript s] are less. Greater shoot dry matter production and LAI due to an enhanced inorganic N supply for wheat after legumes, and to a lesser degree wheat after canola, relative to continuous cereal crop sequences resulted in increases in WUE calculated at anthesis, as reported by others. Nonetheless the increase in WUE was not sustained due to limitations on available soil water capacity caused by soil physical and chemical constraints. Access to more soil water at depth ( > 0.8m ) through additional root growth was unavailable due to soil chemical limitations. More importantly, the amount of plant available water within the ' effective rooting depth ' ( 0 - 0.8m ) was significantly reduced when soil physical factors were accounted for using the integral water capacity ( IWC ) concept. The difference between the magnitude of the plant available water capacity and the integral water capacity was approximately 90mm within the ' effective rooting depth ' when measured at field capacity, suggesting that the ability of the soil to store water and buffer against periodic water deficit was severely limited. The IWC concept offers a method of evaluating the physical quality of soils and the limitations that these physical properties, viz. aeration, soil strength and hydraulic conductivity, impose on the water supply capacity of the soil. The inability of the soil to maintain a constant supply of water to satisfy maximal transpiration efficiency combined with large amounts of N resulted in ' haying off ', and reduced grain yields. A strong negative linear relationship was established between WUE of grain production by wheat and increasing soil NO [subscript 3] - N at sowing in 2000 and 2002, which conflicts with results from experiments in semi - arid Mediterranean climates in other regions of the world where applications of N increased water use efficiency of grain. Estimates of proportional dependence on N [subscript 2] fixation ( % N [subscript dfa] ) for annual medics and vetch from this study ( 43 - 80 % ) are comparable to others for environments in southern Australia ( < 450mm average annual rainfall ). Such estimates of fixation are considered low ( < 65 % ) to adequate ( 65 - 80 % ). Nevertheless, the amount of plant available N present at sowing for subsequent wheat crops, and the occurrence of ' haying off ', suggests that WUE is not N - limited per se, as implied by some reports, but constrained by the capacity of a soil to balance the co - limiting factors of water and nitrogen. / Thesis (Ph.D.)--School of Earth and Environmental Sciences, 2005.
88

Preparation, characterization and properties of nitrogen rich glasses in alkaline earth-Si-O-N systems

Sharafat, Ali January 2009 (has links)
Nitrogen rich glasses in the systems Ca-Si-O-N, Sr-Si-O-N and AE-Ca-Si-O-N (AE = Mg, Sr and Ba) have been prepared using a novel glass-synthesis route. The limits of the glass forming regions in the Ca and Sr systems and substitution limits in the AE-Ca-Si-O-N systems have been determined and physical properties of the glasses measured. Transparent glasses were obtained for a few specific compositions in the Ca-Si-O-N and Mg-Ca-Si-O-N systems. All other glasses were found to be translucent gray to opaque black, with the coloration of the glasses depending on the modifier. Small inclusions of Ca/Sr silicides and, in much smaller amounts, elemental Si are believed to be responsible for their poor transparency. A large glass forming region was found for the Ca-Si-O-N system, with glasses retaining up to 58 e/o N and 42 e/o Ca. In comparison, a more narrow glass forming region was found for the corresponding Sr system, with glasses retaining up to 45 e/o N and 39 e/o Sr. The glass formation was found to depend on reaction kinetics and precursors used. A strong exothermic reaction was observed at temperatures 650–1000oC, providing improved conditions for reaction kinetics upon further heating. Physical property measurements for the Ca and Sr glasses showed that glass transition and crystallization temperatures, viscosity, hardness, Young’s modulus and shear modulus depend strongly on the nitrogen content and that these properties increase approximately linearly with increasing nitrogen content. Glass density and refractive index are also dependent on the modifier element and content, in particular for the Sr glasses. Glasses AE-Ca-Si-O-N, with approximately constant (Ca/AE): Si:O:N ratios, showed that mixed modifier glass properties, such as density, molar volume, glass transition temperature, hardness, refractive index can be related to the effective cation field strength of the modifiers.
89

Nitrogen and dry matter relationships for winter wheats produced in western Oregon

Locke, Kerry A. 08 March 1991 (has links)
Graduation date: 1991
90

DISTRIBUTION OF NITROGEN AND CARBON IN PONDEROSA PINE ECOSYSTEMS AS A FUNCTION OF PARENT MATERIAL

Welch, Tommy G. January 1973 (has links)
No description available.

Page generated in 0.0672 seconds