• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 101
  • 22
  • 15
  • 7
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 192
  • 192
  • 36
  • 32
  • 31
  • 29
  • 24
  • 24
  • 24
  • 24
  • 21
  • 20
  • 19
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Modeling of Ultrafine Particle Emissions and Ambient Levels for the Near Roadside Environment

Ahmed, Sauda 03 April 2017 (has links)
Various epidemiological studies have linked exposure to Ultrafine Particles (UFP; diameter< 100 nm) to adverse health impacts. Roadway traffic is one of the major sources of UFPs and heavily influences UFP concentrations in the nearby vicinity of major roadways. Modeling efforts to predict UFPs have been limited due to the scarcity of reliable information on emissions, lack of monitoring data and limited understanding of complex processes affecting UFP concentrations near sources. In this study continuous measurement of ultrafine particle number concentrations (PNC) and mass concentrations of nitric oxide (NO), nitrogen dioxide (NO2) and PM2.5 was conducted near an arterial road and freeway at different seasons and meteorological conditions and integrated with traffic count data. PNC showed high correlation with NO (r=0.64 for arterial; 0.61 for freeway), NO2 (r=0.57 for arterial; 0.53 for freeway) and NOx (NOx=NO+NO2; r=0.63 for arterial; 0.59 for freeway) and moderate to low correlation with traffic volume (r=0.33 for arterial; 0.32 for freeway) and PM2.5 (r=0.28 for arterial; 0.23 for freeway); respectively; for both sites at 15 minute averages. The PNC-NOx relationship prevailed on a shorter term (15 min), hourly, and throughout the day basis. Both PNC and NOx showed comparatively higher correlation with traffic during the morning period but became lower during evening which can be attributed to the higher boundary layer and wind speeds. The variable meteorology in the evening affects both PNC and NOx concentrations in the same way and the correlation between NOx and PNC is maintained high both during morning (r=0.74 for arterial; 0.69 for freeway), and evening (r=0.62 for arterial; 0.59 for freeway) periods. Thus nitrogen oxides can be used as a proxy for traffic-related UFP number concentration reflecting the effect of both traffic intensity and meteorological dilution. The PNC-NOx relation was explored for various meteorological parameters i.e. wind speed and temperature. It is found that NOx emission is temperature independent and can be used to reflect the effect of traffic intensity and meteorological dilution. Once the effect of traffic intensity and dilution is removed, the effect of temperature on PNC-NOx ratio becomes important which can be attributed to the variation in PNC emission factors with temperature. The high morning PNC-NOx ratio found at the arterial road is a result of new particle formation due to lower temperature and low concentration of exhaust gases in the morning air favoring nucleation over condensation. This finding has important implication when calculating emission factors for UFP number concentrations. Thus it can be concluded that roadside concentration of ultrafine particles not only depends on traffic intensity but also on meteorological parameters affecting dilution or new particle formation. High concentrations of ultrafine particle number concentration close to a roadway is expected due to higher traffic intensity , as well as during low wind speed causing low dilution and low temperature conditions favoring new particle formation. Finally a simplified approach of calculating particle number emission factor was developed using existing and easily available emission inventory for traffic related tracer gases. Using NOx emission factors from MOVES emission model, the emission ratio of PNC to NOx was converted to develop particle number emission factors. NOx was selected as the traffic related tracer gas since the number concentration of particles is closely correlated to NOx, NOx and particles are diluted in the same way and NOx emission factors are available for a variety of traffic situations. To ensure contribution of fresh traffic exhaust, the average of the difference of pollutant concentrations at high traffic condition and background condition was used to calculate PNC-NOX ratio. Using nitrogen oxides to define background and high-traffic conditions and MOVES emission factor for NOX to convert corresponding PNC-NOX ratio, an average emission factor of (1.82 ± 0.17) E+ 14 particle/ vehicle-km was obtained, suitable for summertime. When compared to existing particle number emission factors derived from dynamometer tests, it was found that there exits reasonable agreement between the calculated real world particle number emission factors and emission factors from dynamometer tests. The calculated emission factor and R-Line dispersion model was tested in predicting near-road particle number concentrations. Although only 23% of the variability in PNC was explained by the dispersion model, 84.33% of the measurements fell within the factor of two envelope. This suggests that there is potential to effectively use these models and thus warrants more in-depth analysis. Finally, a simple map of PNC gradients from major roads of Portland was developed. The results of this study helped identify proxy-indicators to provide reference values for estimating UFP concentrations and emissions that can be used for simple evaluation of particle concentration near major roadways for environmental and urban planning purposes and to assess expected impact of UFP pollution on population living near roadways exposed to elevated concentrations.
82

UTILIZATION OF A SMALL UNMANNED AIRCRAFT SYSTEM FOR DIRECT SAMPLING OF NITROGEN OXIDES PRODUCED BY FULL-SCALE SURFACE MINE BLASTING

McCray, Robert B. 01 January 2016 (has links)
Emerging health concern for gaseous nitrogen oxides (NOx) emitted during surface mine blasting has prompted mining authorities in the United States to pursue new regulations. NOx is comprised of various binary compounds of nitrogen and oxygen. Nitric oxide (NO) and nitrogen dioxide (NO2) are the most prominent. Modern explosive formulations are not designed to produce NOx during properly-sustained detonations, and researchers have identified several causes through laboratory experiments; however, direct sampling of NOx following full-scale surface mine blasting has not been accomplished. The purpose of this thesis was to demonstrate a safe, innovative method of directly quantifying NOx concentrations in a full-scale surface mining environment. A small unmanned aircraft system was used with a continuous gas monitor to sample concentrated fumes. Three flights were completed – two in the Powder River Basin. Results from a moderate NOx emission showed peak NO and NO2 concentrations of 257 ppm and 67.2 ppm, respectively. The estimated NO2 presence following a severe NOx emission was 137.3 ppm. Dispersion of the gases occurred over short distances, and novel geometric models were developed to describe emission characteristics. Overall, the direct sampling method was successful, and the data collected are new to the body of scientific knowledge.
83

NOx Production by Ionisation Processes in Air

Rahman, Mahbubur January 2005 (has links)
The study presented in this thesis was motivated by the large uncertainty on the concentration of atmospheric electrical discharges to the global nitrogen budget. This uncertainty is partly due to the fact that information concerning the NOx production efficiency of electrical discharges having current signatures similar to those of lightning flashes is not available in the literature. Another reason for this uncertainty is the fact that energy is used as a figure of merit in evaluating NOx production from lightning flashes even though insufficient knowledge is available concerning the energy dissipation in lightning flashes. The third reason for this uncertainty is the lack of knowledge concerning the contribution of discharge processes other than return strokes to the NOx production in the atmosphere. Lightning is not the only process in the atmosphere that causes ionisation and dissociation of atmospheric air. Cosmic rays continuously bombard the Earth with high energetic particles and radiation causing ionization and dissociation of air leading to the production of NOx in the atmosphere. The work carried out in this thesis is an attempt to improve the current knowledge on the way in which these processes contribute to the global NOx production. Experiments have been conducted in this thesis to estimate the NOx production efficiency of streamer discharges, laser-induced plasma, laboratory sparks having current signatures similar to those of lightning flashes, alpha particle impact in air and finally with the lightning flash itself. The results obtained from laboratory electrical discharges show the following: (a) The NOx production efficiency, in terms of energy, of positive streamer discharges is more or less similar to those of hot discharges. (b) The NOx production efficiency of an electrical discharge depends not only on the energy but also on the peak and the shape of the current waveform. (c) The current signature is a better figure of merit in evaluating the NOx yield of electrical discharges. As a part of this thesis work a direct measurement of NOx generated by lightning flashes was conducted and the results show that slow discharge processes such as continuing currents could be the main source of NOx in lightning flashes. Concerning NOx production by other ionisation processes such as alpha particle impacts in the atmosphere, the data gathered in this thesis show that each ionising event in air leads to the creation of one NOx molecule. In terms of energy the NOx production efficiency of alpha particles is similar to that of electrical discharges. The theoretical studies conducted within this thesis indicate that M-components contribute more than the return strokes to the NOx production. The calculations also show that the contribution to the global NOx budget by return stroke is not as high as that assumed in the current literature.
84

A stereodynamical study of the H+N←2O reaction

Gatenby, Simon David January 1999 (has links)
No description available.
85

Kinetic studies of [3+2] cycloaddition of Fischer carbene complexes with nitrones.

January 1994 (has links)
by Ming Lok Yeung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1994. / Includes bibliographical references (leaves 54-56). / ACKNOWLEDGMENT --- p.i / ABBREVIATION --- p.ii / ABSTRACT --- p.iii / CONTENTS --- p.iv / Chapter I. --- INTRODUCTION --- p.1 / Chapter II. --- RESULTS AND DISCUSSION --- p.8 / Chapter II-1 --- [3+2] CYCLOADDITION OF FISCHER CARBENE COMPLEXES WITH NITRONES --- p.8 / Chapter II-2 --- KINETIC STUDIES OF THE [3+2] CYCLO ADDITION --- p.18 / Chapter III. --- CONCLUSION --- p.35 / Chapter IV. --- EXPERIMENTAL --- p.36 / Chapter V. --- APPENDIX --- p.49 / Chapter V. --- REFERENCES --- p.54 / Chapter VI. --- LIST OF SPECTRA --- p.57 / Chapter VII. --- SPECTRA --- p.58
86

NOx-reducering vid avfallsförbränning / NOx reduction at waste incineration plants

Löfgren, Helena January 2018 (has links)
Avfallsförbränning kan användas för att minska volymen hos avfallet, destruera farligt avfall och utvinna energi för el- och värmeproduktion. Umeå Energis kraftvärmeverk Dåva 1 förbränner hushålls- och verksamhetsavfall. Vid förbränningen bildas bland annat kväveoxider (NOx) vars utsläpp regleras dels av Förordning SFS 2013:253 om förbränning av avfall och dels av Lagen (1990:613) om miljöavgift på utsläpp av kväveoxider (NOx) vid energiproduktion (kväveoxidavgiften). Dåva 1 använder selektiv icke-katalytisk rening (SNCR) med ammoniakinsprutning för att rena rökgaserna från NOx. En del av ammoniaken förblir oreagerad (ammoniakslip) och bidrar troligen till korrosion på den kallare lågtrycksekonomisern nedströms rökgaskanalen. Umeå Energi vill minska sina utsläpp av NOx utan att öka risken för ammoniakrelaterad korrosion av lågtrycksekonomisern. I det här arbetet undersöktes om och hur NOx-bildningen kunde minskas och om det befintliga SNCR-systemet kunde optimeras. Vidare gjordes en utredning om användningen av selektiv katalytisk rening (SCR) på svenska avfallsförbränningsanläggningar samt om och var i Dåva 1 SCR skulle vara fördelaktig att installera. Effektiviteten hos SNCR-systemet testades genom att i perioder stänga av ammoniakdoseringen och logga rökgasinnehållet. Det visade sig vara mycket effektivt (80 %) om det kördes vid rätt temperaturintervall. Men det framkom också att temperaturgränserna för vilken tdoseringsnivå som används troligen kan behöva korrigeras för förbättringar i effektiviteten vid andra temperaturer. Det skulle kunna minska både NOx-utsläpp och ammoniakanvändningen. Användningen av SCR vid svenska avfallsanläggningar undersöktes genom intervjuer. Det visade sig vara bara fem anläggningar och där alla hade placerat katalysatorn i rengasposition, alltså efter elfilter och våt rening. Rökgasinnehållet vid tre olika positioner i Dåva 1 undersöktes för att se om det fanns höga halter av SO2, HCl och stoft, vilka i kombination med ammoniak kan skapa beläggningar som minskar effektiviteten hos en katalysator. Alla positioner låg efter slangfiltren och hade därmed låg stofthalt. Position A låg mellan slangfilter och högtryckseko1 hade den varmaste positionen (205℃) och position B efter ekopaketen (145℃). Position C var efter alla reningssteg i rengaspostion och svalaste positionen (65℃). Variationen hos temperaturerna för de olika positionerna medför en stor skillnad i behovet av att återvärma rökgaserna. Den säkraste positionen, med lägst innehåll av stoft, HCl och SO2 var rengaspositionen, men den krävde istället mest uppvärmning av rökgaserna. Med tanke på att SNCR-systemet visade sig ha förbättringspotential, borde det effektiviseras innan man överväger att installera ett SCR system. / Waste incineration is used to reduce the volume of waste, destruction of hazardous waste and to extract energy in combined heat and power plants (CHP). Umeå Energi’s CHP Dåva 1 incinerates municipal solid waste (MSW) and other hazardous waste. Nitrogen oxides (NOx) are formed in the combustion process. The emission of NOx is regulated in Sweden’s regulation SFS 2013:253 and law 1990:613. Dåva 1 uses selective non-catalytic reduction (SNCR) with ammonia as flue gas treatment, to reduce NOx in the flue gas. Some of the ammonia in the process remains unreacted (ammonia slip) and it probably contributes to corrosion in the colder economizer. Umeå Energi wants to reduce the NOx emissions without increasing the ammonia related corrosion of the economizer. In the present study, the possibility to reduce NOx formation by SNCR optimization was evaluated. Furthermore an investigation on the use of selective catalytic reduction (SCR) in waste incineration plants in Sweden, and whether it is beneficent to install in Dåva 1, was included. The current efficiency of the SNCR system was tested by switching of the ammonia in short periods of time and measuring and logging the flue gas composition. The efficiency (80 %) proved to be very high if operated at the optimal temperature. ButHowever, the test also showed that the temperature limits for the injection levels could be optimized for improved efficiency. Improved efficiency at all temperatures could reduce both NOx emission and ammonia use. The use of SCR in Swedish waste incineration plants was investigated through interviews. It was found that only five plants are equipped with SCR and they were placed in the clean gas position – after electrostatic precipitatorelectric filter and wet scrubber treatment. The contents of the flue gas was examined monitored at three positions at Dåva 1. The content of SO2, HCl and dust were measured, which in combination with ammonia can cause coating with reduces the efficiency of the catalyst. All three positions were located after the textile filters and had low contents of dust. Position A was located between the textile fabric filters and the economizers and was the hottest position with 205℃. Position B was located after the economizers and had the temperature of 145℃. Position C had the cleanest and thereby the safest position for a catalyst, due to its location after all the flue gas treatments, but the temperature was only 65℃ and requires most re-heating of the flue gas. Since the SNCR system proved to have potential to be more efficient, it should be optimized before considering an investment in a SCR system.
87

Investigation of Ambient Reactive Nitrogen Emissions Sources and Deposition in the Columbia River Gorge National Scenic Area

Mainord, Jacinda L. 05 June 2017 (has links)
Anthropogenic reactive nitrogen is emitted into the atmosphere from fossil fuel combustion (nitrogen oxides) and agricultural activities (nitrogen oxides and ammonia). Nitrogen oxide emissions have long been controlled for their role in ambient air pollution and human health effects. However, reactive nitrogen deposition is less understood even though it can play a significant role in altering biodiversity, impairing ecosystem and biogeochemical function and degrading cultural artifacts. Although nitrogen deposition is a natural part of biogeochemical cycling, many ecosystems across the United States are at risk of exceeding the critical nitrogen deposition load. While nitrogen oxides are routinely measured in urban areas, far less is known in non-urban landscapes where ecosystems may be especially sensitive. Regional chemical transport models have been used to predict the impacts of ambient reactive nitrogen deposition in non-urban areas, but models have difficulty simulating reactive nitrogen due to poorly quantified emissions, especially from the agricultural sector. My research explores the speciated deposition of reactive nitrogen through monitoring and modeling in the unique field setting of the 150 mile Columbia River Gorge (CRG) located along the border of Oregon and Washington. This site is ideally suited for this investigation due to the large sources of reactive nitrogen at either end of the CRG and unique seasonally driven channel wind flow. Seasonally driven wind allowed us to look at the reactive nitrogen emissions flowing through the CRG to assess ambient the reactive nitrogen partitioning and deposition gradient. Using data collected by the United States Forest Service to control ambient haze in the CRG and our co-located nitrogen oxides (NOx) gas analyzer, we first characterized the influence of seasonal, bimodal wind distributions on the spatial distribution of reactive nitrogen. We found that during winter months with predominantly easterly winds, particulate nitrate and ammonium and gas-phase nitrogen dioxide levels create a gradient from the eastern end to the western end. Particulate nitrate and sulfate mass concentrations influence the CRG gradient during summer months with predominantly western winds. We also found that the magnitude of the impact from east is greater than the magnitude of impact from the west. When we compared our observations to regional chemistry transport models, we found that models are significantly under-predicting levels of reactive nitrogen in the CRG. This bias is not isolated to a single station within the Gorge, but throughout the whole Columbia Basin. Our results indicate that there are under-represented emissions in the region leading to this bias. Partly due to the bias in reactive N gas-phase species in the CRG, regional models have been underestimating the impact of gas-phase reactive N on dry N deposition. We conducted field studies at two sites within the CRG monitoring reactive nitrogen species (nitric oxide, nitrogen dioxide, ammonia, nitric acid, particulate nitrate, particulate ammonium, and particulate sulfate) as well as ozone and meteorological parameters. These measurements allowed us to conduct the first comprehensive analysis of reactive nitrogen partitioning and deposition in the CRG. Through our measurements, we found reactive nitrogen was higher in the spring than the summer. We found concentrations ranging from 0-15 ppbv ammonia, 0-7 ppbv nitric acid, 0-2 µg/m3 ammonium nitrate and 0-1 µg/m3 ammonium sulfate at the sites. Through the measurements of all these species, we evaluated the limiting gas-phase precursor to inorganic nitrogen particle formation. In the springtime, ammonia limits the formation of particulate reactive nitrogen; while in the summer, nitric acid and oxidized sulfur limit the formation of inorganic nitrogen particles. This suggests that there may be more sources of ammonia in the spring with fertilizer application or perhaps reactive nitrogen reservoirs are renoxified through thermal dissociation during warmer summer months. Our estimated deposition from gas and particle phase reactive nitrogen ranged from 0-0.14 kg N/ha per day. We also found that gas-phase reactive nitrogen plays the largest role in dry N deposition in the CRG with particle-phase contributing less than 15% of total dry N deposition. These results are important for land managers to understand the total impact of reactive nitrogen to non-urban areas. This research can inform mitigation strategies for haze formation, identify the major species and sources involved in dry N deposition and assess the potential impacts to ecosystems and cultural artifacts.
88

Catalytic reduction of nitric oxide by carbon monoxide or hydrogen over a Monel metal catalyst

Crawford, Ian Stewart. January 1987 (has links) (PDF)
Includes summary. Includes bibliographies.
89

Poisoning and sulfation on vanadia SCR catalyst /

Guo, Xiaoyu, January 2006 (has links) (PDF)
Thesis (Ph. D.)--Brigham Young University. Dept. of Chemical Engineering, 2006. / Includes bibliographical references (p. 141-147).
90

<i>NO</i><i>x</i> Production by Ionisation Processes in Air

Rahman, Mahbubur January 2005 (has links)
<p>The study presented in this thesis was motivated by the large uncertainty on the concentration of atmospheric electrical discharges to the global nitrogen budget. This uncertainty is partly due to the fact that information concerning the <i>NO</i><i>x</i> production efficiency of electrical discharges having current signatures similar to those of lightning flashes is not available in the literature. Another reason for this uncertainty is the fact that energy is used as a figure of merit in evaluating <i>NO</i><i>x</i> production from lightning flashes even though insufficient knowledge is available concerning the energy dissipation in lightning flashes. The third reason for this uncertainty is the lack of knowledge concerning the contribution of discharge processes other than return strokes to the <i>NO</i><i>x</i> production in the atmosphere. Lightning is not the only process in the atmosphere that causes ionisation and dissociation of atmospheric air. Cosmic rays continuously bombard the Earth with high energetic particles and radiation causing ionization and dissociation of air leading to the production of <i>NO</i><i>x</i> in the atmosphere. The work carried out in this thesis is an attempt to improve the current knowledge on the way in which these processes contribute to the global <i>NO</i><i>x</i> production. Experiments have been conducted in this thesis to estimate the <i>NO</i><i>x</i> production efficiency of streamer discharges, laser-induced plasma, laboratory sparks having current signatures similar to those of lightning flashes, alpha particle impact in air and finally with the lightning flash itself. The results obtained from laboratory electrical discharges show the following: (a) The <i>NO</i><i>x</i> production efficiency, in terms of energy, of positive streamer discharges is more or less similar to those of hot discharges. (b) The <i>NO</i><i>x</i> production efficiency of an electrical discharge depends not only on the energy but also on the peak and the shape of the current waveform. (c) The current signature is a better figure of merit in evaluating the <i>NO</i><i>x</i> yield of electrical discharges. As a part of this thesis work a direct measurement of <i>NO</i><i>x</i> generated by lightning flashes was conducted and the results show that slow discharge processes such as continuing currents could be the main source of <i>NO</i><i>x</i> in lightning flashes. Concerning <i>NO</i><i>x</i> production by other ionisation processes such as alpha particle impacts in the atmosphere, the data gathered in this thesis show that each ionising event in air leads to the creation of one <i>NO</i><i>x</i> molecule. In terms of energy the <i>NO</i><i>x</i> production efficiency of alpha particles is similar to that of electrical discharges. The theoretical studies conducted within this thesis indicate that M-components contribute more than the return strokes to the <i>NO</i><i>x</i> production. The calculations also show that the contribution to the global <i>NO</i><i>x</i> budget by return stroke is not as high as that assumed in the current literature.</p>

Page generated in 0.0753 seconds