• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 100
  • 34
  • 25
  • 18
  • 13
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 246
  • 48
  • 44
  • 36
  • 29
  • 21
  • 19
  • 18
  • 18
  • 15
  • 15
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Approaches for Noble Gas Isotope Application in Rock Porewater Studies

Zuo, Ende 20 October 2022 (has links)
Radioactive decay of U, Th and K contributes to noble gas radiogenic ingrowth in different geological reservoirs, which distinguish mass origin and reveal its transport pathway. Compared with minerals and fluid inclusions, porewater is more relevant in revealing the mobile mass origin and transport in the porous, deep subsurface environment. Hence, the approaches for porewater noble gas extraction and analysis are of great meaning to geochemistry and hydrogeology. However, all five stable noble gases in rock porewater are difficult to acquire because of possible air contamination during storage and difficulty of noble gas separation. This dissertation is dedicated to exploring novel noble gas extraction and analysis methods from rock porewater. Two porewater gas extraction methods were developed for crystalline and sedimentary rocks, respectively. Temperature-controlled heating was applied to crystalline rocks. Out-diffusion in Al-foil bags was used for Ordovician sedimentary rocks. Regarding noble gas methodology, a newly designed pneumatic processing line was built to explore an iterative polished stainless steel wool trapping method to separate Kr from Ar. The iterative trapping method yields > 95% trapping efficiency for Kr and > 99% trapping efficiency for Xe. Simultaneously, comparable and steady noble gas sensitivities and noble gas isotope ratios were attained from air standard aliquots. From heating experiments on crystalline rock porewater, the consistency of noble gas ratios between headspace gas and rock porewater illustrates that this extraction method is valid for crystalline rock. This work provides a benchmark for noble gas extraction from crystalline rock porewater. With room-temperature out-diffusion method in Al-bag, noble gas ratios and concentrations of Ordovician sedimentary rocks reveal crustal features. The measured noble gas ratios in Ordovician sedimentary cores agree with measurements previously made in the Ordovician brine samples from the western flank of the Michigan Basin. The Ordovician porewater residence time is quantitatively estimated with both He and Xe radiogenic ingrowth, yielding an average of 251 million years (m.y.), which is comparable with the previous He accumulation time estimate at the same study site that yielded 260 m.y.. The remarkable preservation of gases in Al-foil bags provides an economic and efficient possibility for noble gas out-diffusion sampling. In summary, the exploration of porewater noble gas extraction and all five noble gas analysis methodology gives satisfying noble gas results and geological information. These original developments are of great meaning to the future work of the noble gas laboratory at the University of Ottawa.
12

Youths' needs and services of the secondary schools in Noble County, Indiana

Stanley, Ralph Reed January 1941 (has links)
There is no abstract available for this thesis.
13

The electrodeposition of palladium-iron alloys

Baumgaertner, Manfred E. January 1999 (has links)
The main subject of the thesis is the investigation of palladium-iron alloy electrodeposition from aqueous solutions in general. Palladium-iron alloy deposits could be in principle a substitute for nickel or nickel-palladium deposits to avoid metal dermatitis. Nickel contact dermatitis is an especially sensitive allergy caused by decorative or functional use of nickel: it needs to be avoided in a number of applications. Electrochemical and chemical experiments have been carried out on several solutions with variable pH, salts and metal complexes to design a chemical and electrochemical stable electrolyte for palladium-iron alloy electrodeposition. Electrochemical measurements, physical and chemical analysis techniques, mechanical, optical, chemical and electrochemical measurements methods as well as different corrosion tests were used to describe the electrochemical processes and the properties of the palladium-iron deposits. Investigations have shown that from ammoniacal electrolytes electrodeposition in a wide range of composition is possible (pH = 7.5 - 10.5). Electrolyte consists of palladiurn as Pd(NH3)4CI2 and iron as iron(ill)-citrate. Composition of the deposited alloys depends mainly on the ratio of the metal ions in the electrolyte, while the effect of current density and electrolyte temperature is slight. Current efficiency depends on iron concentration in the electrolyte and is a maximum of ca. 85 %. Palladium-iron alloys with a higher content of palladium (>80.-%) show cracks because of the high internal stress (tensile stress) of those layers. Alloys with smaller content of palladium (<20 wt. -%) are less sensitive to cracking. Wear resistance and corrosion resistance of the palladium-iron alloys are similar or sometimes better to palladium, palladium-silver, palladium-cobalt or palladium-nickel deposits. Hardness of the palladium-iron layers increases with increasing iron content from 200 to 600 VHN. Contact resistance is low in the range of 0.5 to 1.5 mfl and barrier layer properties are excellent for gold and copper diffusion during services up to 160 degrees Celsius for 240 hours.
14

Dormancy in Abies seedlings /

Tung, Chao-hsiung. January 1987 (has links)
Thesis (Ph. D.)--Oregon State University, 1988. / Typescript (photocopy). Includes bibliographical references (leaves 101-114). Also available on the World Wide Web.
15

Tracing mantle structure and chemical evolution using noble gas isotopes

Broadley, Michael Ward January 2015 (has links)
The mantle is the largest reservoir of many of the Earth’s volatile species. Detailed isotopic studies of noble gases within the mantle volatiles have demonstrated that they are of a primordial origin, which have been trapped in the mantle since the Earth’s accretion. This original volatile signature has continually evolved over time, due to the production of in situ radiogenic isotopes and through the recycling of surface volatiles back into the mantle (Lupton and Craig, 1975; Holland and Ballentine, 2006). The study of noble gases within magmatic samples has enabled the composition and structure of the mantle to be determined and has distinguished the multiple volatile reservoirs (primordial, crustal, marine etc.) that have contributed to the mantle composition sampled. Together with the halogens (Cl, Br and I) they represent key tracers of volatile transport processes in the Earth. Therefore a combined analytical approach including the halogens and noble gases is not only be able to track the influx of surface volatile into the mantle, but also provide a greater understanding to the fundamental controls of transport, storage and partitioning of volatiles within the mantle. A combined noble gas and halogen study was undertaken on three different geological samples sets to determine how surface volatiles interact with the mantle on a variety of different scales. Firstly continental xenoliths from the Western Antarctic Rift were analysed to establish the role of subduction volatiles in the creation of the rifts volcanic products. The xenoliths have 3He/4He ratios of 7.5RA indicating that the rift is dominated by the rising asthenospheric mantle. However the Br/Cl and I/Cl ratio and heavy noble gases within the xenoliths indicate that marine derived volatiles have been incorporated into the mantle beneath the rift and may have provided and fundamental control on the formation of the rift itself. Secondly the role of surface contamination on mantle samples has been evaluated. A transect along a MOR pillow basalt has been analysed for its halogen concentrations in conjunction with the previously determined noble gases. The outer sections are enriched in Cl relative to Br and I due to the assimilation of a high salinity brine during eruption. In contrast the crystalline interior of the pillow has MORB like Br/Cl and I/Cl ratios but elevated 132Xe/36Ar ratios indicative of the incorporation of pelagic sediments. This small scale analytical approach has shown that submarine pillow basalts are prone to contamination from the surrounding marine environment and provides a method for the identification and quantification of marine contamination. Finally the halogens within olivine phenocrysts from three Emperor Seamounts have been analysed to determine the distribution of the halogens within the lower mantle. The I/Cl ratio of the samples evolves from a MORB-like ratio in the oldest seamount to elevated values similar to sedimentary pore fluids and chondrites in the younger seamounts. This indicates that the Hawaiian mantle plume contains isolated pockets of subducted or primordial material which have been isolated from whole mantle mixing and have therefore retained a halogen signature distinct from the average mantle values.
16

The Noble Brothers and Early Public Improvements in Indiana

Amos, Ruth Esther 01 January 1945 (has links)
The years from 1810 to 1840 deal with one of the most decisive periods in Indiana's history, first as a territory and later as a state. Few periods have seen greater political and material development. During these years great problems, such as the organization of the state government, the disposition of the public lands by the Federal government, and the construction of internal improvements by the national and state governments, had to be solved by those who bore the responsibilities of public office. Great national political movements were in the making. These matured into powerful forces, shaping not only national policies but reaching down and influencing state political and economic alignments and policies. Among the names of families who guided the political affairs of Indiana at the beginning of statehood, none is more prominent than that of Noble. Two Noble brothers, James and Noah, rose to the highest possible positions within the commonwealth. James served as one of the first two United States senators from Indiana, and he continued a member of that body fifteen years,- until his death in 1831. Noah, the younger brother, was elected the fifth Governor of the state in 1831. The third brother, Lazarus, held the Office of Receiver of Public Moneys in the Brookville Land Office. He died at an early age.
17

Time-resolved infrared spectroscopy in Supercritical fluids

Grills, David C. January 1999 (has links)
No description available.
18

The mechanistic basis for storage-dependent age distributions of water discharged from an experimental hillslope

Pangle, Luke A., Kim, Minseok, Cardoso, Charlene, Lora, Marco, Meira Neto, Antonio A., Volkmann, Till H. M., Wang, Yadi, Troch, Peter A, Harman, Ciaran J. 04 1900 (has links)
Distributions of water transit times (TTDs), and related storage-selection (SAS) distributions, are spatially integrated metrics of hydrological transport within landscapes. Recent works confirm that the form of TTDs and SAS distributions should be considered time variant-possibly depending, in predictable ways, on the dynamic storage of water within the landscape. We report on a 28 day periodic-steady-state-tracer experiment performed on a model hillslope contained within a 1 m3 sloping lysimeter. Using experimental data, we calibrate physically based, spatially distributed flow and transport models, and use the calibrated models to generate time-variable SAS distributions, which are subsequently compared to those directly observed from the actual experiment. The objective is to use the spatially distributed estimates of storage and flux from the model to characterize how temporal variation in water storage influences temporal variation in flow path configurations, and resulting SAS distributions. The simulated SAS distributions mimicked well the shape of observed distributions, once the model domain reflected the spatial heterogeneity of the lysimeter soil. The spatially distributed flux vectors illustrate how the magnitude and directionality of water flux changes as the water table surface rises and falls, yielding greater contributions of younger water when the water table surface rises nearer to the soil surface. The illustrated mechanism is compliant with conclusions drawn from other recent studies and supports the notion of an inverse-storage effect, whereby the probability of younger water exiting the system increases with storage. This mechanism may be prevalent in hillslopes and headwater catchments where discharge dynamics are controlled by vertical fluctuations in the water table surface of an unconfined aquifer. Plain Language Summary Volumes of water reside within landscapes for varying amounts of time before they are discharged to a stream. That length of time determines how long the water has to interact chemically with soil and rock, and therefore influences the chemistry of water that ends up in stream channels. Quantifying the full range and variability of those travel times remains a challenge. We built an experimental hillslope, which allows us to keep track of all the water that enters and exits the soilsomething that is difficult to accomplish in open environmental systems. We introduced chemically distinct water into the hillslope at specific points in time and followed the movement of that water within, and upon exit from the soil. We discovered that the water being discharged from the hillslope tends to have resided in the landscape for shorter lengths of time when the hillslope is very wet (like a wetted sponge) than when it is very dry (like a dry sponge). This insight helps us understand how different rainfall regimes, and the associated wetness of the landscape, can potentially influence water transit times through the landscape, and their relationship with stream chemistry.
19

Gold and Silver Nanoparticles: Characterization of their Interesting Optical Properties and the Mechanism of their Photochemical Formation

Eustis, Susie 30 May 2006 (has links)
A new method is developed referred to as Gold Nanorod Optical Modeling Equations (GNOME) for determining the average aspect ratio of gold nanorods in solution. In this method, the observed inhomogeneously broadened optical spectrum is fitted to a number of calculated homogeneously broadened spectra with different aspect ratios having different contributions. From this method, the average aspect ratio is determined. This is a more accurate than the presently used method of TEM. The surface plasmon enhanced fluorescence spectra of gold nanorods are calculated as a function of the aspect ratio and compared to experimental spectra. In this calculation, the inclusion of both the aspect ratio distribution calculated from the GNOME method as well as the incorporation of the intrinsic fluorescence of bulk gold are found necessary to model the enhanced fluorescence spectrum of gold nanorods using previously published equations. The enhanced spectrum decreases rapidly as the aspect ratio increases and the surface plasmon band shift away from the gold interband absorption. Photochemical methods are used to synthesize silver nanoparticles on silica surfaces and gold nanoparticles in solution. The formation silver nanoparticles utilizes benzophenone as a photosensitizing agent to initiate the reaction. The effects of the light source and irradiation time are investigated. The presence of different forms of silica are investigated in the formation of metal nanoparticles. This method produced silver nanoparticles on silica that can be in the form of film or powder that are useful in heterogeneous catalysis. Direct photochemical methods are applied to generate gold nanoparticles from chloroauoroic acid in ethylene glycol in the presence of polyvinylpyrrolidone as a capping material. A detailed mechanism of the formation of the gold nanoparticle is determined. This is done by following the kinetics of formation of the gold nanoparticles after irradiation under different conditions. The disproportionation of the gold ions as well as their reduction by ethylene glycol is found to be important in the formation of the nanoparticles. Photochemical synthesis provides room temperature techniques to generate metal nanoparticles in a variety of environments.
20

Plasmonic laser nanosurgery

Eversole, Daniel Steven 18 November 2013 (has links)
Plasmonic Laser Nanosurgery (PLN) is a novel photodisruption technique that exploits the large enhancement of ultrafast laser pulses in the near-field of gold nanoparticles for the nanoscale manipulation of biological structures. Excitation of surface plasmons on spherical nanoparticles by pulsed irradiation provides a platform for the confinement of photoactivated processes, while functionalized nanoparticle targeting methods provide the highest level of therapeutic selectivity. In this dissertation, we demonstrate and characterize the in vitro plasmonic optoporation of MDA-MB-468 human epithelial breast cancer cells labeled with plasmonic gold nanoparticles using NIR, femtosecond laser pulses. Using a 10 kDa FITC-Dextran probe dye, we find that the PLN can optoporate nanoparticle-labeled cellular membranes at fluences down to just a few mJ/cm², providing a 50-fold reduction in pulse energy necessary to induce membrane dysfunction as compared with unlabeled cells. Limited membrane dysfunction was found to lead to transient optoporation of cells as a possible transfection method, while more extensive, non-recoverable membrane dysfunction lead to cellular death as a possible plasmonic treatment of malicious cells. In the first regime, we found a maximum optoporation efficiency of approximately 31% ± 5.4% with 2 to 2.5 mW laser light having 80 MHz repetition rate. In the second regime, we were able to necrotically kill greater than 90% of irradiated cells with as little as 5 mW average power. We found that particle aggregation along the cellular surface is crucial for the success of PLN. High particle loadings were required, suggesting that particle aggregates provide large enhancements, leading to reduced PLN threshold energies. We provide experimental evidence suggesting photodisruption with ultra-low energy pulses is directly dependent upon the emission of electrons from the particle surface, which seed the formation of free radicals in the surrounding water. These free radicals mediate membrane dysfunction by polyunsaturated lipid and protein peroxidation. / text

Page generated in 0.0463 seconds