• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 100
  • 34
  • 25
  • 18
  • 13
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 246
  • 48
  • 44
  • 36
  • 29
  • 21
  • 19
  • 18
  • 18
  • 15
  • 15
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Comparative study of materials-binding peptide interactions with gold and silver surfaces and nanostructures: A thermodynamic basis for biological selectivity of inorganic materials

Palafox-Hernandez, J.P., Tang, Z., Hughes, Zak E., Li, Y., Swihart, M.T., Prasad, P.N., Walsh, T.R., Knecht, M.R. 13 March 2019 (has links)
No / Controllable 3D assembly of multicomponent inorganic nanomaterials by precisely positioning two or more types of nanoparticles to modulate their interactions and achieve multifunctionality remains a major challenge. The diverse chemical and structural features of biomolecules can generate the compositionally specific organic/inorganic interactions needed to create such assemblies. Toward this aim, we studied the materials-specific binding of peptides selected based upon affinity for Ag (AgBP1 and AgBP2) and Au (AuBP1 and AuBP2) surfaces, combining experimental binding measurements, advanced molecular simulation, and nanomaterial synthesis. This reveals, for the first time, different modes of binding on the chemically similar Au and Ag surfaces. Molecular simulations showed flatter configurations on Au and a greater variety of 3D adsorbed conformations on Ag, reflecting primarily enthalpically driven binding on Au and entropically driven binding on Ag. This may arise from differences in the interfacial solvent structure. On Au, direct interaction of peptide residues with the metal surface is dominant, while on Ag, solvent-mediated interactions are more important. Experimentally, AgBP1 is found to be selective for Ag over Au, while the other sequences have strong and comparable affinities for both surfaces, despite differences in binding modes. Finally, we show for the first time the impact of these differences on peptide mediated synthesis of nanoparticles, leading to significant variation in particle morphology, size, and aggregation state. Because the degree of contact with the metal surface affects the peptide’s ability to cap the nanoparticles and thereby control growth and aggregation, the peptides with the least direct contact (AgBP1 and AgBP2 on Ag) produced relatively polydispersed and aggregated nanoparticles. Overall, we show that thermodynamically different binding modes at metallic interfaces can enable selective binding on very similar inorganic surfaces and can provide control over nanoparticle nucleation and growth. This supports the promise of bionanocombinatoric approaches that rely upon materials recognition. / Air Office of Scientific Research grant number FA9550-12-1-0226
32

Thomas Satterwhite Noble (1835-1907) : reconstructed rebel /

Fleming, Tuliza Kamirah. January 2007 (has links)
Thesis (Ph. D.)--University of Maryland, College Park, 2007. / Thesis research directed by: Art History and Archaeology. Includes bibliographical references (p. 194-207).
33

Design of metal oxide catalysts

Getton, Frederick P. January 2000 (has links)
No description available.
34

Transfert vertical des gaz rares à l'échelle des différentes formations de la zone de transposition du site Meuse/Haute-Marne et à l'échelle des eaux porales de l'argilite du Callovo-Oxfordien

Smith, Thomas 08 December 2010 (has links)
L’Agence nationale pour la gestion des déchets radioactifs (Andra) a pour mission d’évaluer la possibilité d’un stockage sûr et réversible des déchets de haute activité et à vie longue (HAVL) en milieu géologique profond. Depuis 1994, l’Andra étudie dans cette optique les propriétés d’une couche argileuse, le Callovo-Oxfordien (COx) située dans l’Est du Bassin Parisien, à la limite des départements de la Meuse et de la Haute-Marne. A l’échelle du secteur d’étude, le COx constitue une couche homogène d’environ 130 mètres d’épaisseur, profonde de 500 mètres en moyenne, encadrée par deux formations calcaires, l’Oxfordien au sommet et le Dogger à la base. Le COx présente des perméabilités très faibles et des propriétés de confinement favorables pour un stockage.Les gaz rares (He, Ne, Ar, Kr et Xe) sont chimiquement inertes, leur couche de valence étant saturée, aucune liaison covalente intramoléculaire n’est généralement possible. De plus, ils possèdent de nombreux isotopes, d’origine différente, ce qui fait d’eux d’excellents traceurs en hydrogéologie. Les concentrations en gaz rares dans les environnements sédimentaires sont contrôlées par la loi de Henry : ils se dissolvent dans l’eau avec laquelle ils sont en contact, et ce en fonction de paramètres tels que la température, la salinité et la pression.Afin de compléter et préciser les propriétés du COx dans une zone de 250 km² autour du Laboratoire souterrain de Meuse/Haute-Marne, appelée « zone de transposition » (ZT), l’Andra a entrepris une campagne de forages entre Novembre 2007 et Juin 2008. Dans le cadre de cette campagne, le COx a été carotté dans quatre forages et échantillonné. L’un des forages a également recoupé l’ensemble de la pile sédimentaire Mésozoïque, depuis l’Oxfordien calcaire jusqu’à la base du Trias (-1600 mètres).Sur les quatre forages de la zone de transposition (A, B, C et D), des échantillons de roches ont été prélevés et conditionnés pour l’analyse en laboratoire des concentrations en gaz rares dissous dans les eaux porales. Les concentrations absolues en gaz rares ont été déterminées par spectrométrie de masse.Les profils en He obtenus pour chaque plateforme de forage présentent la même tendance. Les concentrations en He mesurées dans les eaux porales de la plateforme C sont en moyenne entre 2 et 3 fois plus faibles que pour les autres plateformes, et ainsi comparables aux valeurs mesurées dans le laboratoire souterrain, ce qui suggèrerait une circulation des eaux dans le Dogger comparativement moins lente que dans les autres plateformes de forage. Une modélisation 1-D des profils de concentration en He a permis de valider les mesures analytiques et de confirmer que la forme des profils est contrôlée par les concentrations en He imposées dans le Dogger. Le profil de concentrations en He mesurées dans le forage profond suggère d’une part une influence très faible voire nulle d’un flux d’origine mantellique et d’autre part une isolation des formations triasiques et du Lias adjacent. L’ensemble des résultats obtenus a ainsi permis d’avoir une meilleure connaissance des processus de transferts diffusifs dans la formation du COx et dans les aquifères encaissants. / The French Radioactive Waste Management National Agency (Andra) is studying the possibility of a high level and long lived radioactive waste repository in geological formation. Since 1994, Andra is studying the properties of the Callovo-Oxfordian (COx) argillaceous rock, located in the eastern part of the Paris Basin. In the designated zone, COx is a 130 meters thick clay rich sequence, found at a depth of about 500 meters and encompassed between two aquifers, the Oxfordian limestone above and the Dogger limestone below. Callovo-Oxfordian permeabilities are very low, which is suitable with radioactive waste disposal. Noble gases (He, Ne, Ar, Kr and Xe) are considered as natural tracers, useful in hydrogeology, for several reasons. First, noble gases are nearly chemically inert, and then no reaction occurs between them and other species. Secondly, noble gases have several isotopes and many of them have different origins, so it is possible to distinguish sources terms. Noble gases concentrations in geological formations are controlled by physical properties such as temperature, pressure and salinity. To have more information on the COx properties, Andra has selected four drilling sites in a 250 km2 area around the Underground Research Laboratory. From November 2007 to June 2008, on each site, Callovo-Oxfordian clay and both overlaying (Oxfordian) and underlying (Dogger) limestones were investigated. A 1600 meters deep borehole, reaching the Trias base, allows investigating the whole length of the Mesozoïc sedimentary pile.On each drilling sites (named A, B, C and D), pore water noble gases concentrations were performed by mass spectrometry. Each helium profiles show the same general trends. Helium concentrations measured in the borehole C COx pore water are about 2 to 3 times lower than those observed for the other boreholes, and so comparable with previous measurements in the Underground Laboratory. These lower concentrations for borehole C could suggest differences in water average velocities in Dogger limestone, in comparison with the other ones. Calculations using a 1-D model were done; the results corroborate analytical measurements and confirm that helium diffusion profiles in the COx are controlled by Dogger helium concentrations that were put in the model. The vertical profile of dissolved helium concentration throughout the deep borehole suggest on the one hand that there is no deep crustal flux, and on the other hand that Trias is well isolated from the Lias and Dogger overlaying formations.The whole results obtained in this study provide a better understanding about diffusive transfer processes occurring in the COx and in the surrounding limestone aquifers.
35

Sol-Gel Chemistry: An Advanced Technique to Produce Macroscopic Nanostructures of Metal and Semiconductor Colloids

Nahar, Lamia 01 January 2017 (has links)
The fascinating physical properties that arise in materials limited to dimensions of 1-100 nm have gained noteworthy interest from the scientific community. Accordingly, there has been a lot of attention paid to the synthesis of discrete nanoparticles (NPs) and they are being investigated for a range of advanced technologies. Nonetheless, efficient use of nanomaterials in device applications require them to be assembled into solid state macro-structures while retaining their unique, nanoparticulate properties. To date, most commonly investigated assembling techniques include: covalent coupling of NPs surface groups, control evaporation of the solvent to produce ordered supercrystals or non-ordered glassy films, and polymer or bimolecular mediated self-assembly. However, in each of these cases, the interactions among discrete NPs are mediated by intervening ligands, the presence of which are detrimental for efficient electronic transport and interparticle coupling that limit performance in optoelectronic,electro-catalytic, and chemical sensor studies. Thus, novel and efficient strategies that can be predictably manipulated for direct, self-supported assembly of NPs are of critical need. A method that has proved useful to construct direct interfacial linkages of colloidal NPs is the sol-gel technique.Oxidative removal of surfactant ligands has been shown to produce self-supported NP monoliths that in most cases retain the physical properties of primary NPs.The ability to create direct interfacial bonds contributes to enhanced electrical and thermal transport as well as tunable interparticle interactions, expanding the potential range of NP technologies. During oxidation, low coordinated active sites are produced on the NP surface that interacts with a nearby NP to reduce the surface energy. The formed active sites are highly reactive allowing the NPs to establish direct interfacial linkages, polymerize into low dimensional clusters, and consequently highly porous superstructures that augment the unique, nanoparticulate properties. An added advantage of this chemistry is the ability to couple chemically similar or dissimilar systems with the potential to achieve novel/tunable physical properties. In this dissertation, application of sol-gel chemistry in efficient integration of similar and dissimilar nanoscale materials will be discussed with an aim of achieving improved optoelectronic and electro-catalytic properties. Hybrid nanomaterials composed of metal-semiconductor components exhibit unique properties in comparison to their individual counterparts, making them of great interest for optoelectronic technologies. The direct cross-linking of NPs via sol-gel chemistry provides a versatile route to tune interfacial interactions in a manner that has not been thoroughly investigated. Thus, the first part of the dissertation will illustrate the synthesis of CdSe/Ag hetero-nanostructures (aerogels) via oxidation induced self-assembly of thiol-coated NPs and investigate the evolution of optical properties as a function of Ag composition. Two hybrid systems were investigated, where the first and second excitonic energies of CdSe were matched with plasmonic energy of Au and Ag NPs. The optical properties of the CdSe/Ag hybrids were systematically examined through UV-visible, photoluminescence, and time resolved photoluminescence spectroscopy. A new emission (640 nm) from CdSe/Ag aerogels was emerged at Ag loading as low as 0.27 % whereas absorption band tailing and PL quenching effects were observed at higher Ag and Au loading, respectively. The TRPL decay time of the new emission (~600 ns) is markedly different from those of the band-edge (1.83 ± 0.03 ns) and trap state (1190 ± 120 ns) emission maxima of phase pure CdSe, supporting the existence of alternate radiative relaxation pathways in sol-gel derived CdSe/Ag hybrids. An added benefit of newly developed sol-gel chemistry is the potential to produce porous, conducting nanoarchitectures that provide a facile pathway for efficient transfer of charge carriers and small molecules. Thus, aerogels composed entirely of noble metal NPs are expected to exhibit high electrical conductivity making them promising for electrocatalysis. Thus, the second part of the dissertation will describe the extension of NP condensation strategy for the fabrication of ternary noble metal (Au/Ag/Pd, Au/Ag/Pt) aerogels for electro-oxidation of alcohols. The precursor alloy NPs were produced via stepwise galvanic replacement of thiol-coated Ag NPs. The resultant alloy NPs were self-assembled into large, free-standing aerogels that exhibit direct interparticle connectivity, high surface area (282 – 98 m2/g) and mesoporosity (2 – 50 nm) via controlled oxidation of the surfactant ligands. The gelation kinetics has been controlled by varying the oxidant/surfactant molar ratio that governs the dealloying of Ag from ternary superstructures with in-situ generated HNO3. The monolithic Au/Ag/Pd alloy aerogels exhibit higher catalytic activity and durability compared to the discrete alloy NPs (~ 20-30 times) and commercial Pd/C catalyst (2-3 times). On the other hand, Au/Ag/Pt alloy aerogels showed excellent stability at higher concentration of methanol (12 M) during electro-oxidation studies, suggesting its superior electro-catalytic activity. The synergistic effect of tri-metallic alloy mitigates the catalyst poisoning and increases the stability and durability whereas the self-supported superstructure with direct interparticle connectivity, high surface area and porosity offers a facile conduit for molecular and electronic transport, enabling the ternary aerogels an efficient electro-catalyst.
36

Interconnecting controlled synthesis, plasmonic, and catalysis: from education to the next generation of nanomaterials for triggering green transformations / Interconectando síntese controlada, plasmônica e catálise: da educação à próxima geração de nanomateriais para transformações verdes

Silva, Anderson Gabriel Marques da 27 March 2017 (has links)
This dissertation is directed towards the fundamental understanding of the controlled synthesis of noble-metal (silver, gold, and palladium) and metal oxide (manganese and copper oxide) nanostructures as well as their applications in heterogeneous and plasmonic catalysis. In the first part of this work (Section 1), we provided a general background concerning the science of controlled nanomaterials, their syntheses, properties, and applications in catalysis and plasmonic catalysis. Then, we describe and developed a series of protocols for the synthesis of these nanomaterials with controlled sizes and structures (spheres, cubes, rods, shells, flowers, dendrites, and tadpoles), mainly focusing on the mechanistic understanding of their formation and how physical and chemical parameters (size, shape, composition, surface morphology) may influence/modify their catalytic properties (Sections 2 and 3). In Section 4, we turned our attention for the design of simple protocols for the synthesis of advanced nanomaterials that are interesting for green catalytic transformations applications. In this case, we envisioned the use of MnO2-Au nanomaterials (nanowires and nanoflowers) displaying several properties (unique pore structure, high surface area, ultrasmall Au NPs at the surface, high concentration of oxygen vacancies and Auδ+ species, strong metal-support interactions, and uniform shapes and sizes) that are desirable for catalyzing a series of green oxidation reactions in mild conditions (low temperatures and molecular oxygen or atmospheric air as the oxidants). In Section 5, we have demonstrated that catalysis and optical properties can be merged together to improve catalytic processes, the so called-plasmonic catalysis. This allowed us the use of visible light as the energy input to drive chemical transformations in mild conditions and then provide new insights regarding the various factors that affect SPR-mediated catalytic activities in plasmonic nanostructures. Finally, in Section 6, we focused our attention on how important is to introduce both nanoscience and the synthesis/characterization of nanomaterials having controlled physicochemical features to undergraduate students. Specifically, we have described simple laboratory experiments for the synthesis of nanomaterials (gold nanospheres and Cu(OH)2/CuO nanowires) displaying uniform sizes and shapes in order to investigate and explain their optical properties, catalytic activities and formation mechanisms. / Não consta resumo na publicação.
37

Interconnecting controlled synthesis, plasmonic, and catalysis: from education to the next generation of nanomaterials for triggering green transformations / Interconectando síntese controlada, plasmônica e catálise: da educação à próxima geração de nanomateriais para transformações verdes

Anderson Gabriel Marques da Silva 27 March 2017 (has links)
This dissertation is directed towards the fundamental understanding of the controlled synthesis of noble-metal (silver, gold, and palladium) and metal oxide (manganese and copper oxide) nanostructures as well as their applications in heterogeneous and plasmonic catalysis. In the first part of this work (Section 1), we provided a general background concerning the science of controlled nanomaterials, their syntheses, properties, and applications in catalysis and plasmonic catalysis. Then, we describe and developed a series of protocols for the synthesis of these nanomaterials with controlled sizes and structures (spheres, cubes, rods, shells, flowers, dendrites, and tadpoles), mainly focusing on the mechanistic understanding of their formation and how physical and chemical parameters (size, shape, composition, surface morphology) may influence/modify their catalytic properties (Sections 2 and 3). In Section 4, we turned our attention for the design of simple protocols for the synthesis of advanced nanomaterials that are interesting for green catalytic transformations applications. In this case, we envisioned the use of MnO2-Au nanomaterials (nanowires and nanoflowers) displaying several properties (unique pore structure, high surface area, ultrasmall Au NPs at the surface, high concentration of oxygen vacancies and Auδ+ species, strong metal-support interactions, and uniform shapes and sizes) that are desirable for catalyzing a series of green oxidation reactions in mild conditions (low temperatures and molecular oxygen or atmospheric air as the oxidants). In Section 5, we have demonstrated that catalysis and optical properties can be merged together to improve catalytic processes, the so called-plasmonic catalysis. This allowed us the use of visible light as the energy input to drive chemical transformations in mild conditions and then provide new insights regarding the various factors that affect SPR-mediated catalytic activities in plasmonic nanostructures. Finally, in Section 6, we focused our attention on how important is to introduce both nanoscience and the synthesis/characterization of nanomaterials having controlled physicochemical features to undergraduate students. Specifically, we have described simple laboratory experiments for the synthesis of nanomaterials (gold nanospheres and Cu(OH)2/CuO nanowires) displaying uniform sizes and shapes in order to investigate and explain their optical properties, catalytic activities and formation mechanisms. / Não consta resumo na publicação.
38

First-principles studies of gas hydrates and clathrates under pressure

Teeratchanan, Pattanasak January 2018 (has links)
Gas hydrates are molecular host-guest mixtures where guest gas species are encapsulated in host water networks. They play an important role in gas storage in aqueous environments at relatively low pressures, and their stabilities are determined by weak interactions of the guest species with their respective host water frameworks. Thus, the size and the amount of the guest species vary, depending on the size of the empty space provided by the host water structures. The systems studied here are noble gas (He, Ne, Ar) and diatomic (H2) hydrates. Because of the similarity of the guests' sizes between the noble gases and the di-atomic gases, the noble gas hydrates act as simple models for the di-atomic gas hydrates. For example, He, Ne and H2 have approximately the same size. Density functional theory calculations are used to obtain the ground state formation enthalpies of each gas hydrate, as a function of host network, guest stoichiometry, and pressure. Dispersion effects are investigated by comparing various dispersion corrections in the exchange-correlation functionals (semi-local PBE, semi-empirical D2 pair correction, and non-local density functionals i.e. vdW-DF family). Results show that the predicted stability ranges of various phases agree qualitatively, although having quantitative difference, irrespective of the methods of the dispersion corrections in the exchange-correlation functionals. Additionally, it is shown in gas-water dimer interaction calculations that all DFT dispersion-corrected functionals overbind significantly than the interaction acquired by the coupled-cluster calculations, at the CCSD(T) level, which is commonly accepted to provide the most accurate estimation of the actual interaction energy. This could lead to an overestimation of the stability of the hydrate mixtures. Further study in the gas-water cluster indicates that less overbinding effect is found in the cluster than in the dimer. This implies that the overbinding energy caused by DFT might become less pronounce in the solid phase. Graph invariant topology and a program based on a graph theory are used to assign protons based on the 'ice rule' to fulfill the incomplete experimental structural data such as unknown/unclear positions of protons in the host water lattices. These methods help constructing host water networks for computational calculations. Several configurations of the host water structures are tested. Those configurations having lowest enthalpies are used as the host water networks in this research. Furthermore, the enthalpic spread between the configurations having the highest and the lowest enthalpy in the pure water ice network is very small (about 10 meV per water molecule). Nevertheless, it is still unclear to conclude that this protonic effect is also trivial in the gas-water compound. Therefore, this study also calculates the enthalpies of the gas-water mixtures having various proton configurations in the host water networks. Results indicate that very small enthalpic distributions among the proton configurations are found in the compounds as well. Furthermore, the enthalpic spread is almost constant as pressure increases. This suggests there is no pressure effect in the enthalpy gap amoung the proton distributions in both pure water ice and the gas-water compounds. Predicted stable phases for the noble gas compound systems are based on four host water networks, namely, ice Ih, II and Ic, and the novel host water network S!. The He-water system adopts ice Ih, II and Ic network upon increasing pressure. In the Ne-water system, a phase sequence of Sx/ice-Ih, II and Ic with a competitive hydrate phase in the S! host network at very low pressure is found. This is similar to the phase evolution of the H2-water system. For the Ar-water mixture, only a partially occupied hydrate in the Sx host network is found stable. This Sx phase becomes metastable if taking the traditional clathrates (sI and sII) into account. This result agrees very well with the experiment suggesting only two-third filling is found the large guest gases i.e. CO2. For the diatomic guest gas compound systems, the traditional clathrate structure (sII) that found to be existed experimentally in the H2-H2O system is also included in this study together with those four host water networks. Predicted phase stability sequence as elevated pressure is as follows: Sx, ice-Ih, II and Ic. This computationally prediction agrees very well with experiment. Results in this work suggest that the compound based on the traditional clathrate structure II (sII) host water framework is found to be metastable with respect to the decomposition constituents - in this case, they are pure water ice and the S!. The metastability of the hydrogen hydrates based on the sII structure might due to zero-point motions or other dynamic/entropic mechanisms uncovered in this research. Dynamic studies concerning the transition states of the hydrogen guest molecules in three competitive phases at very low pressure (less than 10 kbar), based on Sx, ice-Ih, and ice-II host water network, are considered. The energy barriers required by the hydrogen guest molecules in those three host frameworks are calculated by using Nudged Elastic Band (NEB) method. Results suggest that the hydrogen molecules are more mobile in the Sx than the other two host structures significantly. In the S! host water network, the energy barrier is about 25 meV/hydrogen molecule. This energy is about the room temperature suggesting that the hydrogen guest molecules are easily mobile in the Sx host water network if there is an empty site adjacent to them.
39

The Moorish Science Temple of America: A Study Exploring the Foundations of African American Islamic Thought and Culture

Easterling, Paul 16 September 2013 (has links)
Abstract The Moorish Science Temple of America: A Study Exploring the Foundations of African American Islamic Thought and Culture By Paul H. L. Easterling One of the reasons religious studies is important to the academic process is because it seeks to understand the intricacies of well known human systems of meaning. Also important is research on those religious systems not well known. Herein lies the purpose of this dissertation, to exam a religious movement within the African American community, which has not received the academic attention it deserves, the Moorish Science Temple of America, Inc. (MSTA). Therefore, the primary thesis for this dissertation: to expand the current study of African American Islam to include the intricacies of the movement and organization of the MSTA through attention to primary materials and secondary literature.
40

Fluorescent noble metal nanoclusters

Zheng, Jie 19 April 2005 (has links)
Water-soluble fluorescent metallic clusters at sizes comparable to the Fermi wavelength of an electron (~0.5 nm for gold and silver) were created and their photophysical properties were investigated at the bulk and single molecule levels. We employed biocompatible dendrimer and peptide to prepare a series of strong fluorescent gold and silver clusters with chemical or photo reduction methods. Facilitated by the well-defined dendrimer size, electrospray ionization mass spectrometry indicates that the fluorescent silver nanocluster size ranges from 2 to 8 Ag atoms. The correlation of emission energy with the number of atoms, N, in each gold nanocluster is quantitatively fit for the smallest nanoclusters with no adjustable parameters by the simple scaling relation of EFermi/N1/3, in which EFermi is the Fermi energy of bulk gold. The transition energy scaling inversely with cluster radius indicates that electronic structure can be well described with the spherical jellium model and further demonstrates that these nanomaterials are multi-electron artificial atoms. Fluorescence from these small metal clusters can be considered protoplasmonic, molecular transitions of the free conduction electrons before the onset of collective dipole oscillations occurring when a continuous density of states is reached. In addition, very strong single molecular Stokes and Antistokes Raman enhancement by fluorescent silver clusters was observed. Pushing to larger sizes, we also created ~ 2nm diameter glutathione encapsulated luminescent gold nanoparticles. Distinct from similarly sized but nonluminescent gold nanoparticles, these 2 nm gold nanoparticles show bright, long lifetime emission but no plasmon absorption. The emission might arise from charge transfer between gold atoms and the thiol ligand. Providing the missing link between atomic and nanoparticle behavior in noble metals, these highly fluorescent, water-soluble gold and silver nanoclusters offer complementary transition energy size scalings at smaller dimensions than do semiconductor quantum dots. The unique discrete excitation and emission and strong Stokes and antistokes Raman enhancement coupled with facile creation in aqueous solution open new opportunities for noble metal nanoclusters as biological labels, energy transfer pairs, and other light emitters in nanoscale electronics.

Page generated in 0.0263 seconds