• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 263
  • 128
  • 63
  • 44
  • 10
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 676
  • 109
  • 94
  • 80
  • 57
  • 56
  • 56
  • 50
  • 49
  • 49
  • 47
  • 44
  • 43
  • 42
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Development of Liquid-based Separation Techniques using Tailored Surfaces for Analysis of Biological Samples

Hardenborg, Emilia January 2008 (has links)
Development and improvement of analytical techniques are vital in analytical chemistry research. This thesis describes the development and use of tailored surfaces for bioanalytical applications. In sample preparation, solid phase extraction is often used and the development of a protocol for extraction on a molecular imprinted polymer (MISPE) directly from plasma sample is presented. Molecular imprinted polymers (MIP) offer selective sorbents for the imprinted analyte. MISPE has mainly been used in organic phase but in this thesis the development of a protocol for direct extraction of the analyte form an aqueous phase is described. For analysis of complex samples a separation step is often needed. The growing interest in analysis of biological samples and analysis of the human proteome and potential biomarkers has increased the interest in developing new separation techniques. Capillary electrophoresis (CE) has evolved into an important technique for use in analysis of body fluids. In this thesis a novel polyamine coating named PolyE 323 tailored for minimizing the adsorption of basic proteins to the surface is introduced. A straightforward coating protocol, with four simple rinsing steps, was developed. The coating was highly reproducible and useable over a wide pH range. Successful protein separations on PolyE-323-coated capillaries coupled to electrospray ionization mass spectrometry (ESI-MS) were demonstrated. The coated capillaries were also used in studies of protein content of aqueous humor samples from cataract patients as a complement to capillary liquid chromatography. In the studies presented the protein content of aqueous humor samples from two clinical groups was compared. By using capillary liquid separation techniques coupled to matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and MS/MS in combination with isobaric tags for relative and absolute quantitation (iTRAQ) the identity and relative concentrations of proteins in the samples were evaluated. Earlier studies of the proteins in these kinds of samples have mainly been done with techniques using immunological detection where the proteins of interest were chosen in advance. In this thesis it was shown that liquid-based separation techniques are a good complement and by using the mass spectrometry approach presented the protein content of the samples could be evaluated without bias.
362

Chiral Separation of Amines by Non-Aqueous Capillary Electrophoresis using Low Molecular Weight Selectors

Hedeland, Ylva January 2006 (has links)
Three chiral selectors (diketogulonic acid, benzoxycarbonylglycylproline and ketopinic acid) have been introduced for enantioseparation of pharmacologically active amines in non-aqueous capillary electrophoresis. The use of organic solvents, instead of aqueous buffers in the background electrolyte facilitated ion-pair formation between the analytes and the chiral selectors. The enantioresolution was strongly affected by the choice of selector and organic solvent but also depended on the other electrolytes. The most important parameter for the enantioresolution, apart from the choice of chiral selector, was the direction and magnitude of the electro-osmosis. Thus, covalently coated capillaries were used to suppress and to reverse this flow. Furthermore, the alkali metal hydroxide added to the background electrolyte had a great influence on the electro-osmosis. Exchanging LiOH for NaOH, was found to decrease the electro-osmotic flow. Interestingly, the flow was altered from cathodic to anodic, with KOH, RbOH or CsOH added to the ethanolic BGE. The occurrence of a reversed electro-osmosis had a great positive effect on the enantioresolution. An appropriate choice of solvent and electrolytes promoted also fast chiral separations, e.g., the enantiomers of isoprenaline were resolved within one minute. The capillary electrophoresis systems developed within this work were applied for enantiomeric purity determinations of different pharmaceutical forms of drug products. A detection limit of 0.033 % was achieved for 1S,2R-ephedrine, the enantiomeric impurity in Efedrin®, when diketogulonic acid was used as the selector. By using the pre-concentration technique, transient isotachophoresis, the peak efficiency was enhanced for the enantiomers of timolol. This facilitated the introduction of a higher concentration of the sample into the capillary electrophoretic system containing ketopinic acid as the selector, and lowered the detection limit from 2.5 % to 0.2 % for the enantiomeric impurity R-timolol compared with injection without transient isotachophoresis. The volatility of the non-aqueous media in capillary electrophoresis facilitated the hyphenation to mass spectrometry. The partial filling technique ensured that the selector did not contaminate the mass spectrometer, and the separated enantiomers of e.g., pronethalol were detected in the selector-free zone.
363

Pharmacological evaluation of antidiarrhoeal and antidiabetic activities of Syzygium Cordatum Hochst. ex C. Krauss

Deliwe, Mzonke. January 2011 (has links)
Syzygium cordatum is a medicinal plant indigenous to South Africa and Mozambique, commonly used to treat stomach aches, diabetes, respiratory problems and tuberculosis. In spite of the folklore use, adequate scientific data to credit its widespread traditional use is lacking. The objectives of this study were: to evaluate and validate scientifically the successful therapeutic claims by traditional medicine practitioners that Syzygium cordatum is effective in treating diarrhoea and diabetes / to determine the effects of the plant extract on gastrointestinal transit of a charcoal meal in mice / to determine the effects on castor oilinduced intestinal fluid accumulation / to determine the safety profile of the plant by carrying out acute toxicology study and to carry out preliminary screening of the active compounds present in the plant using standard phytochemical analytical procedures. The aqueous leaf extract of Syzygium cordatum (3.125 -50mg/kg, p.o) significantly reduced the faecal output caused by castor oil (0.7ml). All the doses used, reduced faecal output from 100% produced by castor oil to between 40 and 61%. S.cordatum (6.25 &ndash / 50mg/kg, p.o) significantly and in a dose dependent manner, delayed the onset of castor oil-induced diarrhoea.
364

Novel on-line mid infrared detection strategies in capillary electrophoretic systems

Kölhed, Malin January 2005 (has links)
Infrared absorption spectra can provide analytically useful information on a large variety of compounds, ranging from small ions to large biological molecules. In fact, all analytes that possess a dipole moment that changes during vibration are infrared-active. The infrared (IR) spectrum can be subdivided into far-, mid- and near- regions. The focus of attention in this thesis is the mid-IR region, in which the fundamental vibrations of most organic compounds are located, thus providing scope for positive structural identification. However, while such near-ubiquitous signals can be very useful for monitoring simple molecules in simple systems, they can be increasingly disadvantageous as the number of analytes and/or the complexity of the sample matrix increases. Thus, hyphenation to a separation system prior to detection is desirable. Paper I appended to this thesis presents (for the first time) the on-line hyphenation between Fourier transform infrared spectroscopy, FTIR, and capillary zone electrophoresis, CZE. CZE is a highly efficient separation technique that separates ionic analytes with respect to their charge-to-size ratio. It is most commonly performed in aqueous buffers in fused silica capillaries. Since these capillaries absorb virtually all infrared light an IR-transparent flow cell had to be developed. In further studies (Paper II) the applicability of CZE is expanded to include neutral analytes by the addition of micelles to the buffer, and micellar electrokinetic chromatography, MEKC, was successfully hyphenated to FTIR for the first time. Paper III describes an application of the on-line CZE-FTIR technique in which non-UV-absorbing analytes in a complex matrix were separated, identified and quantified in one run. Measuring aqueous solutions in the mid-IR region is not straightforward since water absorbs intensely in this region, sometimes completely, leaving no transmitted, detectable light. For this reason, quantum cascade lasers are interesting. These lasers represent a new type of mid-IR semiconducting lasers with high output power due to their ingenious design. The laser action lies within one conduction band (intersubband) and can be tailored to emit light in the entire mid-IR region using the same semiconducting material. To investigate their potential to increase the optical path length in aqueous solutions, these lasers were used with an aqueous flow system (Paper IV), and the experience gained in these experiments enabled hyphenation of such lasers to a CZE system (Paper V).
365

Multiphase Contamination in Rock Fractures : Fluid Displacement and Interphase Mass Transfer / Flerfasföroreningar i sprickigt berg : Utbredning och massöverföring mellan faser

Yang, Zhibing January 2012 (has links)
Multiphase flow and transport in fractured rock is of importance to many practical and engineering applications. In the field of groundwater hydrology an issue of significant environmental concern is the release of dense non-aqueous phase liquids (DNAPLs) which can cause long-term groundwater contamination in fractured aquifers. This study deals with two fundamental processes – fluid displacement and interphase mass transfer – concerning the behavior of the multiphase contaminants in fractured media. The focus of this work has been placed on improving the current understanding of small-scale (single fracture) physics by a combined effort of numerical modeling analysis, laboratory experiments and model development. This thesis contributes to the improved understanding through several aspects. Firstly, the effect of aperture variability, as characterized by geostatistical parameters such as standard deviation and correlation length, on the DNAPL entrapment, dissolution and source-depletion behaviors in single fractures was revealed. Secondly, a novel, generalized approach (adaptive circle fitting approach) to account for the effect of in-plane curvature of fluid-fluid interfaces on immiscible fluid displacement was developed; the new approach has demonstrated good performance when applied to simulate previously published experimental data. Thirdly, the performance of a continuum-based two-phase flow model and an invasion percolation model was compared for modeling fluid displacement in a variable-aperture fracture and the dependence of fracture-scale capillary pressure – saturation relationships on aperture variability was studied. Lastly, through experimental studies and mechanistic numerical modeling of DNAPL dissolution, kinetic mass transfer characteristics of two different entrapment configurations (residual blobs and dead-end pools) were investigated. The obtained understanding from this thesis will be useful for predictive modeling of multiphase contaminant behavior at a larger (fracture network) scale. / Flerfasflöde och ämnestransport i sprickigt berg är av betydelse för många praktiska och tekniska problem. Tunga, svårlösliga organiska vätskor (engelska: dense non-aqueous phase liquids: DNAPLs; t.ex. klorerade lösningsmedel) kan orsaka långvarig förorening av vattenresurser, inklusive akviferer i sprickigt berg, och utgör ett viktigt miljöproblem inom grundvattenhydrologin. Denna studie behandlar två fundamentala processer för spridning av flerfasföroreningar i sprickiga medier – utbredning av den organiska vätskan och massöverföring mellan organisk vätska och vatten. Arbetet har fokuserat på att förbättra nuvarande kunskap om de fysikaliska processerna på liten skala (enskilda sprickor) genom en kombination av numerisk modellering, laboratorieexperiment och modellutveckling. Avhandlingen har bidragit till utökad processförståelse i flera avseenden. För det första har arbetet belyst effekterna av sprickaperturens variabilitet, uttryckt med geostatistiska parametrar som standardavvikelse och rumslig korrelationslängd, på fastläggning och lösning av organiska vätskor i enskilda sprickor, samt utmattningsbeteendet hos dessa källor till grundvattenförorening. För det andra har en ny, generell metod (adaptiva cirkelpassningsmetoden) för att ta hänsyn till effekten av krökningen av gränsytan mellan organisk vätska och vatten i sprickplanet utvecklats; denna metod har visats fungera väl i simuleringar av tidigare publicerade experimentella data. För det tredje, har en jämförelse gjorts mellan en kontinuumbaserad tvåfasflödesmodell och en invasions-perkolationsmodell med avseende på hur väl de kan simulera tvåfasflöde i en spricka med varierande apertur. Här studerades även hur relationen mellan kapillärtryck och mättnadsgrad på sprickplansskala beror av variabiliteten i sprickapertur. Till sist undersöktes lösning av den organiska vätskan i grundvatten för två fastläggningsscenarier (fastläggning i immobila droppar och ansamling i fällor – ”återvändssprickor”) både genom experiment och mekanistisk numerisk modellering. Kunskapen som tagits fram i denna avhandling bedöms vara användbar även för att modellera spridningen av flerfasföroreningar på större (spricknätverks-) skalor.
366

Structure-Property Relationships in Carbon Nanotube-Polymer Systems: Influence of Noncovalent Stabilization Techniques

Liu, Lei 20 January 2010 (has links)
A variety of experiments were carried out to study the dispersion and microstructure of carbon nanotubes in aqueous suspensions and polymer composites with the goal to improve the electrical conductivity of the composites containing nanotubes. Epoxy composites containing covalently and noncovalently functionalized nanotubes were compared in terms of electrical and mechanical behavior. Covalent functionalization of nanotubes is based on chemical attachments of polyethylenimine (PEI) whereas noncovalent functionalization takes place through physical mixing of nanotubes and PEI. The electrical conductivity is reduced in composites containing covalently functionalized nanotubes due to damage of the tube?s conjugated surface that reduces intrinsic conductivity. Conversely, the mechanical properties are always better for epoxy composites containing covalently functionalized nanotubes. Clay particles were used as a rigid dispersing aid for nanotubes in aqueous suspensions and epoxy composites. When both nanotubes and clay were introduced into water by sonication, the suspension is stable for weeks, whereas the nanotubes precipitate almost instantly for the suspension without clay. In epoxy composites, nanotubes form separated clusters of aggregation, whereas a continuous threedimensional nanotube network is achieved when clay is introduced. Electrical conductivity of the epoxy composite is shown to significantly improve with a small addition of clay and the percolation threshold is simultaneously decreased (from 0.05 wt% nanotubes, when there is no clay, to 0.01 wt% when 2 wt% clay is introduced). The addition of clay can also improve the mechanical properties of the composites, especially at higher clay concentration. Weak polyelectrolytes (i.e., pH-responsive polymers) were also studied for their interaction with nanotubes and the electrical properties of the dried composite films. When dispersed by sonication, Nanotubes show pH-dependent dispersion and stability in poly(acrylic acid) water solution, as evidenced by changes in suspension viscosity and cryo-TEM images. The nanotube suspensions were then dried under ambient conditions and the composite films exhibit tailorable nanotube dispersion as a function of pH. The percolation threshold and maximum electrical conductivity are reduced when the pH is changed from low to high. Some other pH-responsive polymers were also studied, but their pH-dependent viscosity and conductivity were not as large or reversible as poly(acrylic acid).
367

Accelerated Aging Of Elastomers In Aqueous Media

Inaler, Ekrem 01 January 2007 (has links) (PDF)
EPDM (Ethylene-Propylene-Diene Monomer)/PP (Polypropylene) based TPV (Thermoplastic Vulcanizate) was aged in a closed system at stabilized temperature and pressure at 80, 100 and 120oC in distilled water, detergent solution and shiner solution. The variation in properties of TPV upon aging were followed by using DSC (Differential Scanning Calorimetry), TGA (Thermogravimetric Analysis), tensile testing, Shore A rubber hardness testing. DSC analysis indicated that percent crystallinity of PP component in TPV increased at 100oC whereas crystal structure was deformed at 120oC. In addition to this, hardness test showed that the hardness of TPV remained almost constant in distilled water aging except 120oC water aging but TPV became softer in detergent and shiner solution upon all aging temperatures used in this study. Tensile testing confirmed the hardness analysis that the loss in mechanical properties of TPV was observed except 100oC water aging. TGA analysis showed that percent crystallinity increase causes enhancement in degradation temperature of EPDM/PP blend in air. It is detected that TPV is quite resistant to 80oC aging, but TPV loses its resistance to preserve its characteristics at 120oC aging. It is also determined that aging media is as important as temperature to evaluate the performance of TPV. Moreover, it is decided that the rate of aging directly proportional to detrimental rate is arranged in an order from the slowest to the fastest as distilled water, detergent and shiner solution media.
368

Crystal Engineering of Molecular and Ionic Cocrystals

Ong, Tien Teng 01 January 2011 (has links)
Solubility enhancement of poorly-soluble active pharmaceutical ingredients (APIs) remains a scientific challenge and poses a practical issue in the pharmaceutical industry. The emergence of pharmaceutical cocrystals has contributed another dimension to the diversity of crystal forms available at the disposal of the pharmaceutical scientist. That pharmaceutical cocrystals are amenable to the design principles of crystal engineering means that the number of crystal forms offered by pharmaceutical cocrystals is potentially greater than the combined numbers of polymorphs, salts, solvates and hydrates for an API. The current spotlight and early-onset dissolution profile ("spring-and-parachute" effect) exhibited by certain pharmaceutical cocrystals draw attention to an immediate question: How big is the impact of cocrystals on aqueous solubility? The scientific literature and in-house data on pharmaceutical cocrystals that are thermodynamically stable in water are reviewed and analyzed for trends in aqueous solubility and melting point between the cocrystal and the cocrystal formers. There is poor correlation between the aqueous solubility of cocrystal and cocrystal former with respect to the API. The log of the aqueous solubility ratio between cocrystal and API has a poor correlation with the melting point difference between cocrystal and API. Structure-property relationships between the cocrystal and the cocrystal formers remain elusive and the actual experiments are still necessary to investigate the desired physicochemical properties. Crystal form (cocrystals, polymorphs, salts, hydrates and solvates) diversity is and will continue to be a contentious issue for the pharmaceutical industry. That the crystal form of an API dramatically impacts its aqueous solubility (a fixed thermodynamic property) is illustrated by the histamine H2-receptor antagonist ranitidine hydrochloride and HIV protease inhibitor ritonavir. For more than a century, the dissolution rate of a solid has been shown to be directly dependent on its solubility, cçterîs paribus. A century later, it remains impossible to predict the properties of a solid, given its molecular structure. If delivery or absorption of an API are limited by its aqueous solubility, aqueous solubility then becomes a critical parameter linking bioavailability and pharmacokinetics of an API. Since the majority of APIs are Biopharmaceutical Classification System (BCS) Class II (low solubility and high permeability) compounds, crystal form screening, optimization and selection have thus received more efforts, attention and investment. Given that the dissolution rate, aqueous solubility and crystal form of an API are intricately linked, it remains a scientific challenge to understand the nature of crystal packing forces and their impact upon physicochemical properties of different crystal forms. Indeed, the selection of an optimal crystal form of an API is an indispensable part of the drug development program. The impact of cocrystals on crystal form diversity is addressed with molecular and ionic targets in ellagic acid and lithium salts. A supramolecular heterosynthon approach was adopted for crystal form screening. Crystal form screening of ellagic acid yields molecular cocrystals, cocrystal solvates/hydrates and solvates. Crystal form screening of lithium salts (chloride, bromide and nitrate salts) afforded ionic cocrystals and cocrystal hydrates.
369

Applications of Molecular Dynamics Techniques and Spectroscopic Theories to Aqueous Interfaces

Green, Anthony 31 August 2010 (has links)
The primary goal of spectroscopy is to obtain molecularly detailed information about the system under study. Sum frequency generation (SFG) vibrational spectroscopy is a nonlinear optical technique that is highly interface specific, and is therefore a powerful tool for understanding interfacial structure and dynamics. SFG is a second order, electronically nonresonant, polarization experiment and is consequently dipole forbidden in isotropic media such as a bulk liquid. Interfaces, however, serve to break the symmetry and produce a signal. Theoretical approximations to vibrational spectra of O-H stretching at aqueous interfaces are constructed using time correlation function (TCF) and instantaneous normal mode (INM) methods. Detailed comparisons of theoretical models and spectra are made with those obtained experimentally in an effort to establish that our molecular dynamics (MD) methods can reliably depict the system of interest. The computational results presented demonstrate the potential of these methods to accurately describe fundamentally important systems on a molecular level.
370

A novel cryogenic particle engineering technology to micronize water-insoluble drugs and enhance their dissolution properties : spray-freezing into liquid

Rogers, True Lawson 14 May 2015 (has links)
Poorly water-soluble and insoluble chemical agents are routinely investigated in the pharmaceutical industry for pharmacological activity, but many of these are never commercialized due to inadequate dissolution and subsequent low oral bioavailability following oral administration. The bioavailability of many hydrophobic active pharmaceutical ingredients (APIs) can be increased by enhancing their aqueous dissolution. Spray-Freezing into Liquid (SFL) is a novel particle engineering technology that has been demonstrated in the following studies to significantly enhance the dissolution of insoluble APIs. The ultimate goal throughout the studies was to produce micronized SFL powders where the inherently insoluble API would be completely dissolved in aqueous dissolution media within a minimal amount of time (less than ca. 10 minutes). The SFL particle engineering technology is a novel process that was developed, investigated and optimized in order to broaden its applications in pharmaceutical drug delivery systems. Micronized SFL powders were compared head-to-head with powders produced from milling, co-grinding with excipients and slow freezing of liquids containing dissolved API and excipients followed by lyophilization. To strengthen the applicability of the SFL particle engineering technology, studies were conducted where micronized SFL powders were exposed to various stability storage conditions, and characterized to determine the influences of the exposure conditions and time on the physicochemical properties of the powder containing the API. The utility of the SFL process was further enhanced by developing an atmospheric freeze-drying (ATMFD) technique to obtain dry micronized SFL powders. Micronized SFL powders dried by ATMFD were compared to micronized SFL powders dried by vacuum-freeze drying to determine any changes in physicochemical properties or dissolution profiles as a function of the drying technique utilized. The usefulness of the SFL particle engineering technology was broadened when it was found that highly concentrated emulsions could be processed by SFL to produce micronized powders that rapidly wetted and dissolved in dissolution media. Micronized SFL powders produced from emulsion were investigated and compared to slowly frozen agglomerates from emulsion and a micronized SFL powder from solution. As a result of the following studies, the enabling examples using the SFL platform were designed to illustrate applications of the SFL technology as a tool to enhance the aqueous dissolution of poorly water-soluble and insoluble APIs. Therefore, it was demonstrated that this novel particle engineering technology is a feasible method that may be used in the pharmaceutical industry to solve the ever-present solubility and dissolution problems associated with poorly water-soluble or insoluble APIs, or chemical agents being investigated for pharmacological activity as future APIs / text

Page generated in 0.0424 seconds