Spelling suggestions: "subject:"nonsupervisé"" "subject:"nonsupervisée""
231 |
Improving sampling, optimization and feature extraction in Boltzmann machinesDesjardins, Guillaume 12 1900 (has links)
L’apprentissage supervisé de réseaux hiérarchiques à grande échelle connaît présentement un succès fulgurant. Malgré cette effervescence, l’apprentissage non-supervisé représente toujours, selon plusieurs chercheurs, un élément clé de l’Intelligence Artificielle, où les agents doivent apprendre à partir d’un nombre potentiellement limité de données. Cette thèse s’inscrit dans cette pensée et aborde divers sujets de recherche liés au problème d’estimation de densité par l’entremise des machines de Boltzmann (BM), modèles graphiques probabilistes au coeur de l’apprentissage profond. Nos contributions touchent les domaines de l’échantillonnage, l’estimation de fonctions de partition, l’optimisation ainsi que l’apprentissage de représentations invariantes.
Cette thèse débute par l’exposition d’un nouvel algorithme d'échantillonnage adaptatif, qui ajuste (de fa ̧con automatique) la température des chaînes de Markov sous simulation, afin de maintenir une vitesse de convergence élevée tout au long de l’apprentissage. Lorsqu’utilisé dans le contexte de l’apprentissage par maximum de vraisemblance stochastique (SML), notre algorithme engendre une robustesse accrue face à la sélection du taux d’apprentissage, ainsi qu’une meilleure vitesse de convergence. Nos résultats sont présent ́es dans le domaine des BMs, mais la méthode est générale et applicable à l’apprentissage de tout modèle probabiliste exploitant l’échantillonnage par chaînes de Markov.
Tandis que le gradient du maximum de vraisemblance peut-être approximé par échantillonnage, l’évaluation de la log-vraisemblance nécessite un estimé de la fonction de partition. Contrairement aux approches traditionnelles qui considèrent un modèle donné comme une boîte noire, nous proposons plutôt d’exploiter la dynamique de l’apprentissage en estimant les changements successifs de log-partition encourus à chaque mise à jour des paramètres. Le problème d’estimation est reformulé comme un problème d’inférence similaire au filtre de Kalman, mais sur un graphe bi-dimensionnel, où les dimensions correspondent aux axes du temps et au paramètre de température.
Sur le thème de l’optimisation, nous présentons également un algorithme permettant d’appliquer, de manière efficace, le gradient naturel à des machines de Boltzmann comportant des milliers d’unités. Jusqu’à présent, son adoption était limitée par son haut coût computationel ainsi que sa demande en mémoire. Notre algorithme, Metric-Free Natural Gradient (MFNG), permet d’éviter le calcul explicite de la matrice d’information de Fisher (et son inverse) en exploitant un solveur linéaire combiné à un produit matrice-vecteur efficace. L’algorithme est prometteur: en terme du nombre d’évaluations de fonctions, MFNG converge plus rapidement que SML. Son implémentation demeure malheureusement inefficace en temps de calcul.
Ces travaux explorent également les mécanismes sous-jacents à l’apprentissage de représentations invariantes. À cette fin, nous utilisons la famille de machines de Boltzmann restreintes “spike & slab” (ssRBM), que nous modifions afin de pouvoir modéliser des distributions binaires et parcimonieuses. Les variables latentes binaires de la ssRBM peuvent être rendues invariantes à un sous-espace vectoriel, en associant à chacune d’elles, un vecteur de variables latentes continues (dénommées
“slabs”). Ceci se traduit par une invariance accrue au niveau de la représentation et un meilleur taux de classification lorsque peu de données étiquetées sont disponibles. Nous terminons cette thèse sur un sujet ambitieux: l’apprentissage de représentations pouvant séparer les facteurs de variations présents dans le signal d’entrée. Nous proposons une solution à base de ssRBM bilinéaire (avec deux groupes de facteurs latents) et formulons le problème comme l’un de “pooling” dans des sous-espaces vectoriels complémentaires. / Despite the current widescale success of deep learning in training large scale hierarchical models through supervised learning, unsupervised learning promises to play a crucial role towards solving general Artificial Intelligence, where agents are expected to learn with little to no supervision. The work presented in this thesis tackles the problem of unsupervised feature learning and density estimation, using a model family at the heart of the deep learning phenomenon: the Boltzmann Machine (BM). We present contributions in the areas of sampling, partition function estimation, optimization and the more general topic of invariant feature learning.
With regards to sampling, we present a novel adaptive parallel tempering method which dynamically adjusts the temperatures under simulation to maintain good mixing in the presence of complex multi-modal distributions. When used in the context of stochastic maximum likelihood (SML) training, the improved ergodicity of our sampler translates to increased robustness to learning rates and faster per epoch convergence. Though our application is limited to BM, our method is general and is applicable to sampling from arbitrary probabilistic models using Markov Chain Monte Carlo (MCMC) techniques. While SML gradients can be estimated via sampling, computing data likelihoods requires an estimate of the partition function. Contrary to previous approaches which consider the model as a black box, we provide an efficient algorithm which instead tracks the change in the log partition function incurred by successive parameter updates. Our algorithm frames this estimation problem as one of filtering performed over a 2D lattice, with one dimension representing time and the other temperature.
On the topic of optimization, our thesis presents a novel algorithm for applying the natural gradient to large scale Boltzmann Machines. Up until now, its application had been constrained by the computational and memory requirements of computing the Fisher Information Matrix (FIM), which is square in the number of parameters. The Metric-Free Natural Gradient algorithm (MFNG) avoids computing the FIM altogether by combining a linear solver with an efficient matrix-vector operation. The method shows promise in that the resulting updates yield faster per-epoch convergence, despite being slower in terms of wall clock time.
Finally, we explore how invariant features can be learnt through modifications to the BM energy function. We study the problem in the context of the spike & slab Restricted Boltzmann Machine (ssRBM), which we extend to handle both binary and sparse input distributions. By associating each spike with several slab variables, latent variables can be made invariant to a rich, high dimensional subspace resulting in increased invariance in the learnt representation. When using
the expected model posterior as input to a classifier, increased invariance translates to improved classification accuracy in the low-label data regime. We conclude by showing a connection between invariance and the more powerful concept of disentangling factors of variation. While invariance can be achieved by pooling over subspaces, disentangling can be achieved by learning multiple complementary views of the same subspace. In particular, we show how this can be achieved using third-order BMs featuring multiplicative interactions between pairs of random variables.
|
232 |
Distributed conditional computationLéonard, Nicholas 08 1900 (has links)
L'objectif de cette thèse est de présenter différentes applications du programme de recherche de calcul conditionnel distribué.
On espère que ces applications, ainsi que la théorie présentée ici, mènera à une solution générale du problème
d'intelligence artificielle, en particulier en ce qui a trait à la nécessité d'efficience.
La vision du calcul conditionnel distribué consiste à accélérer l'évaluation et l'entraînement de modèles profonds,
ce qui est très différent de l'objectif usuel d'améliorer sa capacité de généralisation et d'optimisation.
Le travail présenté ici a des liens étroits avec les modèles de type mélange d'experts.
Dans le chapitre 2, nous présentons un nouvel algorithme d'apprentissage profond qui
utilise une forme simple d'apprentissage par renforcement sur un modèle d'arbre de décisions à base
de réseau de neurones. Nous démontrons la nécessité d'une contrainte d'équilibre pour maintenir la
distribution d'exemples aux experts uniforme et empêcher les monopoles. Pour rendre le calcul efficient,
l'entrainement et l'évaluation sont contraints à être éparse en utilisant un routeur échantillonnant
des experts d'une distribution multinomiale étant donné un exemple.
Dans le chapitre 3, nous présentons un nouveau modèle profond constitué d'une représentation
éparse divisée en segments d'experts. Un modèle de langue à base de réseau de neurones est construit à partir
des transformations éparses entre ces segments. L'opération éparse par bloc est implémentée pour utilisation
sur des cartes graphiques. Sa vitesse est comparée à deux opérations denses du même calibre pour démontrer
le gain réel de calcul qui peut être obtenu. Un modèle profond utilisant des opérations éparses contrôlées
par un routeur distinct des experts est entraîné sur un ensemble de données d'un milliard de mots.
Un nouvel algorithme de partitionnement de données est appliqué sur un ensemble de mots pour
hiérarchiser la couche de sortie d'un modèle de langage, la rendant ainsi beaucoup plus efficiente.
Le travail présenté dans cette thèse est au centre de la vision de calcul conditionnel distribué
émis par Yoshua Bengio. Elle tente d'appliquer la recherche dans le domaine des mélanges d'experts
aux modèles profonds pour améliorer leur vitesse ainsi que leur capacité d'optimisation.
Nous croyons que la théorie et les expériences de cette thèse sont une étape importante sur
la voie du calcul conditionnel distribué car elle cadre bien le problème, surtout en ce qui
concerne la compétitivité des systèmes d'experts. / The objective of this paper is to present different applications of the distributed conditional computation research program.
It is hoped that these applications and the theory presented here will lead to a general solution of the problem of
artificial intelligence, especially with regard to the need for efficiency.
The vision of distributed conditional computation is to accelerate the evaluation and training of deep models
which is very different from the usual objective of improving its generalization and optimization capacity.
The work presented here has close ties with mixture of experts models.
In Chapter 2, we present a new deep learning algorithm that
uses a form of reinforcement learning on a novel neural network decision tree model.
We demonstrate the need for a balancing constraint to keep the
distribution of examples to experts uniform and to prevent monopolies. To make the calculation efficient,
the training and evaluation are constrained to be sparse by using a gater that
samples experts from a multinomial distribution given examples.
In Chapter 3 we present a new deep model consisting of a
sparse representation divided into segments of experts.
A neural network language model is constructed from blocks of sparse transformations between these expert segments.
The block-sparse operation is implemented for use on graphics cards.
Its speed is compared with two dense operations of the same caliber to demonstrate
and measure the actual efficiency gain that can be obtained. A deep model using
these block-sparse operations controlled by a distinct gater is trained on a dataset of one billion words.
A new algorithm for data partitioning (clustering) is applied to a set of words to
organize the output layer of a language model into a conditional hierarchy, thereby making it much more efficient.
The work presented in this thesis is central to the vision of distributed conditional computation
as issued by Yoshua Bengio. It attempts to apply research in the area of
mixture of experts to deep models to improve their speed and their optimization capacity.
We believe that the theory and experiments of this thesis are an important step
on the path to distributed conditional computation because it provides a good framework for the problem,
especially concerning competitiveness inherent to systems of experts.
|
233 |
Contribution à la sélection de variables par les machines à vecteurs support pour la discrimination multi-classes / Contribution to Variables Selection by Support Vector Machines for Multiclass DiscriminationAazi, Fatima Zahra 20 December 2016 (has links)
Les avancées technologiques ont permis le stockage de grandes masses de données en termes de taille (nombre d’observations) et de dimensions (nombre de variables).Ces données nécessitent de nouvelles méthodes, notamment en modélisation prédictive (data science ou science des données), de traitement statistique adaptées à leurs caractéristiques. Dans le cadre de cette thèse, nous nous intéressons plus particulièrement aux données dont le nombre de variables est élevé comparé au nombre d’observations.Pour ces données, une réduction du nombre de variables initiales, donc de dimensions, par la sélection d’un sous-ensemble optimal, s’avère nécessaire, voire indispensable.Elle permet de réduire la complexité, de comprendre la structure des données et d’améliorer l’interprétation des résultats et les performances du modèle de prédiction ou de classement en éliminant les variables bruit et/ou redondantes.Nous nous intéressons plus précisément à la sélection de variables dans le cadre de l’apprentissage supervisé et plus spécifiquement de la discrimination à catégories multiples dite multi-classes. L’objectif est de proposer de nouvelles méthodes de sélection de variables pour les modèles de discrimination multi-classes appelés Machines à Vecteurs Support Multiclasses (MSVM).Deux approches sont proposées dans ce travail. La première, présentée dans un contexte classique, consiste à sélectionner le sous-ensemble optimal de variables en utilisant le critère de "la borne rayon marge" majorante du risque de généralisation des MSVM. Quant à la deuxième approche, elle s’inscrit dans un contexte topologique et utilise la notion de graphes de voisinage et le critère de degré d’équivalence topologique en discrimination pour identifier les variables pertinentes qui constituent le sous-ensemble optimal du modèle MSVM.L’évaluation de ces deux approches sur des données simulées et d’autres réelles montre qu’elles permettent de sélectionner, à partir d’un grand nombre de variables initiales, un nombre réduit de variables explicatives avec des performances similaires ou encore meilleures que celles obtenues par des méthodes concurrentes. / The technological progress has allowed the storage of large amounts of data in terms of size (number of observations) and dimensions (number of variables). These data require new methods, especially for predictive modeling (data science), of statistical processing adapted to their characteristics. In this thesis, we are particularly interested in the data with large numberof variables compared to the number of observations.For these data, reducing the number of initial variables, hence dimensions, by selecting an optimal subset is necessary, even imperative. It reduces the complexity, helps to understand the data structure, improves the interpretation of the results and especially enhances the performance of the forecasting model by eliminating redundant and / or noise variables.More precisely, we are interested in the selection of variables in the context of supervised learning, specifically of multiclass discrimination. The objective is to propose some new methods of variable selection for multiclass discriminant models called Multiclass Support Vector Machines (MSVM).Two approaches are proposed in this work. The first one, presented in a classical context, consist in selecting the optimal subset of variables using the radius margin upper bound of the generalization error of MSVM. The second one, proposed in a topological context, uses the concepts of neighborhood graphs and the degree of topological equivalence in discriminationto identify the relevant variables and to select the optimal subset for an MSVM model.The evaluation of these two approaches on simulated and real data shows that they can select from a large number of initial variables, a reduced number providing equal or better performance than those obtained by competing methods.
|
234 |
Apprentissage machine efficace : théorie et pratiqueDelalleau, Olivier 03 1900 (has links)
Malgré des progrès constants en termes de capacité de calcul, mémoire et quantité de données disponibles, les algorithmes d'apprentissage machine doivent se montrer efficaces dans l'utilisation de ces ressources. La minimisation des coûts est évidemment un facteur important, mais une autre motivation est la recherche de mécanismes d'apprentissage capables de reproduire le comportement d'êtres intelligents. Cette thèse aborde le problème de l'efficacité à travers plusieurs articles traitant d'algorithmes d'apprentissage variés : ce problème est vu non seulement du point de vue de l'efficacité computationnelle (temps de calcul et mémoire utilisés), mais aussi de celui de l'efficacité statistique (nombre d'exemples requis pour accomplir une tâche donnée).
Une première contribution apportée par cette thèse est la mise en lumière d'inefficacités statistiques dans des algorithmes existants. Nous montrons ainsi que les arbres de décision généralisent mal pour certains types de tâches (chapitre 3), de même que les algorithmes classiques d'apprentissage semi-supervisé à base de graphe (chapitre 5), chacun étant affecté par une forme particulière de la malédiction de la dimensionalité. Pour une certaine classe de réseaux de neurones, appelés réseaux sommes-produits, nous montrons qu'il peut être exponentiellement moins efficace de représenter certaines fonctions par des réseaux à une seule couche cachée, comparé à des réseaux profonds (chapitre 4). Nos analyses permettent de mieux comprendre certains problèmes intrinsèques liés à ces algorithmes, et d'orienter la recherche dans des directions qui pourraient permettre de les résoudre.
Nous identifions également des inefficacités computationnelles dans les algorithmes d'apprentissage semi-supervisé à base de graphe (chapitre 5), et dans l'apprentissage de mélanges de Gaussiennes en présence de valeurs manquantes (chapitre 6). Dans les deux cas, nous proposons de nouveaux algorithmes capables de traiter des ensembles de données significativement plus grands. Les deux derniers chapitres traitent de l'efficacité computationnelle sous un angle différent. Dans le chapitre 7, nous analysons de manière théorique un algorithme existant pour l'apprentissage efficace dans les machines de Boltzmann restreintes (la divergence contrastive), afin de mieux comprendre les raisons qui expliquent le succès de cet algorithme. Finalement, dans le chapitre 8 nous présentons une application de l'apprentissage machine dans le domaine des jeux vidéo, pour laquelle le problème de l'efficacité computationnelle est relié à des considérations d'ingénierie logicielle et matérielle, souvent ignorées en recherche mais ô combien importantes en pratique. / Despite constant progress in terms of available computational power, memory and amount of data, machine learning algorithms need to be efficient in how they use them. Although minimizing cost is an obvious major concern, another motivation is to attempt to design algorithms that can learn as efficiently as intelligent species. This thesis tackles the problem of efficient learning through various papers dealing with a wide range of machine learning algorithms: this topic is seen both from the point of view of computational efficiency (processing power and memory required by the algorithms) and of statistical efficiency (n
umber of samples necessary to solve a given learning task).The first contribution of this thesis is in shedding light on various statistical inefficiencies in existing algorithms. Indeed, we show that decision trees do not generalize well on tasks with some particular properties (chapter 3), and that a similar flaw affects typical graph-based semi-supervised learning algorithms (chapter 5). This flaw is a form of curse of dimensionality that is specific to each of these algorithms. For a subclass of neural networks, called sum-product networks, we prove that using networks with a single hidden layer can be exponentially less efficient than when using deep networks (chapter 4). Our analyses help better understand some inherent flaws found in these algorithms, and steer research towards approaches that may potentially overcome them.
We also exhibit computational inefficiencies in popular graph-based semi-supervised learning algorithms (chapter 5) as well as in the learning of mixtures of Gaussians with missing data (chapter 6). In both cases we propose new algorithms that make it possible to scale to much larger datasets. The last two chapters also deal with computational efficiency, but in different ways. Chapter 7 presents a new view on the contrastive divergence algorithm (which has been used for efficient training of restricted Boltzmann machines). It provides additional insight on the reasons why this algorithm has been so successful. Finally, in chapter 8 we describe an application of machine learning to video games, where computational efficiency is tied to software and hardware engineering constraints which, although often ignored in research papers, are ubiquitous in practice.
|
235 |
Apprentissage Supervisé Relationnel par Algorithmes d'ÉvolutionAugier, Sébastien 19 December 2000 (has links) (PDF)
Cette thèse concerne l'apprentissage de règles relationnelles à partir d'exemples et de contre-exemples, à l'aide d'algorithmes évolutionnaires. Nous étudions tout d'abord un biais de langage offrant une expressivité suffisamment riche pour permettre de couvrir à la fois le cadre de l'apprentissage relationnel par interprétations et les formalismes propositionnels classiques. Bien que le coût de l'induction soit caractérisé par la complexité NP-difficile du test de subsomption pour cette classe de langages, une solution capable de traiter en pratique les problèmes réels complexes est proposée. Le système SIAO1, qui utilise ce biais de langage pour l'apprentissage de règles relationnelles est ensuite présenté. Il est fondé sur une stratégie de recherche évolutionnaire qui se distingue principalement des approches classiques par: - des opérateurs de mutation et de croisement dirigés par la théorie du domaine et par les exemples d'apprentissage; - le respect de la relation d'ordre définie sur le langage. L'évaluation du système sur plusieurs bases faisant référence en apprentissage automatique montre que SIAO1 est polyvalent, se compare favorablement aux autres approches et sollicite peu l'utilisateur en ce qui concerne la spécification de biais de recherche ou d'évaluation. La troisième partie de ce travail propose deux architectures parallèles génériques derivées des modèles maître-esclave asynchrone et du pipeline. Elles sont étudiées dans le cadre de l'extraction de connaissances à partir de données à l'aide de SIAO1 du point de vue de l'accélération qu'elles procurent d'une part et de leur capacité à changer d'échelle d'autre part. Un modèle de prédiction simple mais précis des performances de chacune des architectures parallèles est également proposé.
|
236 |
Fusion de Données Multicapteurs pour un Système de Télésurveillance Médicale de Personnes à DomicileDuchêne, Florence 15 October 2004 (has links) (PDF)
Le développement des systèmes de télésurveillance médicale à domicile est fondamental face au vieillissement de la population et aux capacités limitées d admission dans les hôpitaux et centres spécialisés. Ce travail de thèse concerne particulièrement la conception d un assistant intelligent pour l analyse des données hétérogènes collectées par des capteurs au domicile afin de détecter, voire prévenir, l occurrence de situations inquiétantes. Il s agit de concevoir un système d apprentissage des habitudes de vie d une personne, tout écart par rapport à ce profil comportemental étant considéré comme critique. L étude proposée concerne d une part la conception d un processus de simulation pour la génération de grandes quantités de données appropriées au contexte expérimental. D autre part, une méthode générique pour l extraction non supervisée de motifs dans des séquences temporelles multidimensionnelles et hétérogènes est proposée puis expérimentée dans le contexte de l identification des comportements récurrents d une personne dans ses activités quotidiennes. On évalue en particulier les indices de sensibilité (tolérance aux modifications normales de comportement) et de spécificité (rejet des modifications inquiétantes) du système. L application du système d apprentissage aux séquences générées par la simulation permet également de vérifier l extraction possible de comportements récurrents interprétés a posteriori en terme de la réalisation d activités de la vie quotidienne.
|
237 |
Inférence de réseaux d'interaction protéine-protéine par apprentissage statistiqueBrouard, Céline 14 February 2013 (has links) (PDF)
L'objectif de cette thèse est de développer des outils de prédiction d'interactions entre protéines qui puissent être appliqués en particulier chez l'homme, sur les protéines qui constituent un réseau avec la protéine CFTR. Cette protéine, lorsqu'elle est défectueuse, est impliquée dans la mucoviscidose. Le développement de méthodes de prédiction in silico peut s'avérer utile pour suggérer aux biologistes de nouvelles cibles d'interaction et pour mieux expliquer les fonctions des protéines présentes dans ce réseau. Nous proposons une nouvelle méthode pour le problème de la prédiction de liens dans un réseau. Afin de bénéficier de l'information des données non étiquetées, nous nous plaçons dans le cadre de l'apprentissage semi-supervisé. Nous abordons ce problème de prédiction comme une tâche d'apprentissage d'un noyau de sortie, appelée régression à noyau de sortie. Un noyau de sortie est supposé coder les proximités existantes entre les noeuds du graphe et l'objectif est d'approcher ce noyau à partir de descriptions appropriées en entrée. L'utilisation de l'astuce du noyau dans l'ensemble de sortie permet de réduire le problème d'apprentissage à partir de paires à un problème d'apprentissage d'une fonction d'une seule variable à valeurs dans un espace de Hilbert. En choisissant les fonctions candidates pour la régression dans un espace de Hilbert à noyau reproduisant à valeur opérateur, nous développons, comme dans le cas de fonctions à valeurs scalaires, des outils de régularisation. Nous établissons en particulier des théorèmes de représentation dans le cas supervisé et dans le cas semi-supervisé, que nous utilisons ensuite pour définir de nouveaux modèles de régression pour différentes fonctions de coût, appelés IOKR-ridge et IOKR-margin. Nous avons d'abord testé l'approche développée sur des données artificielles, des problèmes test ainsi que sur un réseau d'interaction protéine-protéine chez la levure S. Cerevisiae et obtenu de très bons résultats. Puis nous l'avons appliquée à la prédiction d'interactions entre protéines dans le cas d'un réseau construit autour de la protéine CFTR.
|
238 |
Improving sampling, optimization and feature extraction in Boltzmann machinesDesjardins, Guillaume 12 1900 (has links)
L’apprentissage supervisé de réseaux hiérarchiques à grande échelle connaît présentement un succès fulgurant. Malgré cette effervescence, l’apprentissage non-supervisé représente toujours, selon plusieurs chercheurs, un élément clé de l’Intelligence Artificielle, où les agents doivent apprendre à partir d’un nombre potentiellement limité de données. Cette thèse s’inscrit dans cette pensée et aborde divers sujets de recherche liés au problème d’estimation de densité par l’entremise des machines de Boltzmann (BM), modèles graphiques probabilistes au coeur de l’apprentissage profond. Nos contributions touchent les domaines de l’échantillonnage, l’estimation de fonctions de partition, l’optimisation ainsi que l’apprentissage de représentations invariantes.
Cette thèse débute par l’exposition d’un nouvel algorithme d'échantillonnage adaptatif, qui ajuste (de fa ̧con automatique) la température des chaînes de Markov sous simulation, afin de maintenir une vitesse de convergence élevée tout au long de l’apprentissage. Lorsqu’utilisé dans le contexte de l’apprentissage par maximum de vraisemblance stochastique (SML), notre algorithme engendre une robustesse accrue face à la sélection du taux d’apprentissage, ainsi qu’une meilleure vitesse de convergence. Nos résultats sont présent ́es dans le domaine des BMs, mais la méthode est générale et applicable à l’apprentissage de tout modèle probabiliste exploitant l’échantillonnage par chaînes de Markov.
Tandis que le gradient du maximum de vraisemblance peut-être approximé par échantillonnage, l’évaluation de la log-vraisemblance nécessite un estimé de la fonction de partition. Contrairement aux approches traditionnelles qui considèrent un modèle donné comme une boîte noire, nous proposons plutôt d’exploiter la dynamique de l’apprentissage en estimant les changements successifs de log-partition encourus à chaque mise à jour des paramètres. Le problème d’estimation est reformulé comme un problème d’inférence similaire au filtre de Kalman, mais sur un graphe bi-dimensionnel, où les dimensions correspondent aux axes du temps et au paramètre de température.
Sur le thème de l’optimisation, nous présentons également un algorithme permettant d’appliquer, de manière efficace, le gradient naturel à des machines de Boltzmann comportant des milliers d’unités. Jusqu’à présent, son adoption était limitée par son haut coût computationel ainsi que sa demande en mémoire. Notre algorithme, Metric-Free Natural Gradient (MFNG), permet d’éviter le calcul explicite de la matrice d’information de Fisher (et son inverse) en exploitant un solveur linéaire combiné à un produit matrice-vecteur efficace. L’algorithme est prometteur: en terme du nombre d’évaluations de fonctions, MFNG converge plus rapidement que SML. Son implémentation demeure malheureusement inefficace en temps de calcul.
Ces travaux explorent également les mécanismes sous-jacents à l’apprentissage de représentations invariantes. À cette fin, nous utilisons la famille de machines de Boltzmann restreintes “spike & slab” (ssRBM), que nous modifions afin de pouvoir modéliser des distributions binaires et parcimonieuses. Les variables latentes binaires de la ssRBM peuvent être rendues invariantes à un sous-espace vectoriel, en associant à chacune d’elles, un vecteur de variables latentes continues (dénommées
“slabs”). Ceci se traduit par une invariance accrue au niveau de la représentation et un meilleur taux de classification lorsque peu de données étiquetées sont disponibles. Nous terminons cette thèse sur un sujet ambitieux: l’apprentissage de représentations pouvant séparer les facteurs de variations présents dans le signal d’entrée. Nous proposons une solution à base de ssRBM bilinéaire (avec deux groupes de facteurs latents) et formulons le problème comme l’un de “pooling” dans des sous-espaces vectoriels complémentaires. / Despite the current widescale success of deep learning in training large scale hierarchical models through supervised learning, unsupervised learning promises to play a crucial role towards solving general Artificial Intelligence, where agents are expected to learn with little to no supervision. The work presented in this thesis tackles the problem of unsupervised feature learning and density estimation, using a model family at the heart of the deep learning phenomenon: the Boltzmann Machine (BM). We present contributions in the areas of sampling, partition function estimation, optimization and the more general topic of invariant feature learning.
With regards to sampling, we present a novel adaptive parallel tempering method which dynamically adjusts the temperatures under simulation to maintain good mixing in the presence of complex multi-modal distributions. When used in the context of stochastic maximum likelihood (SML) training, the improved ergodicity of our sampler translates to increased robustness to learning rates and faster per epoch convergence. Though our application is limited to BM, our method is general and is applicable to sampling from arbitrary probabilistic models using Markov Chain Monte Carlo (MCMC) techniques. While SML gradients can be estimated via sampling, computing data likelihoods requires an estimate of the partition function. Contrary to previous approaches which consider the model as a black box, we provide an efficient algorithm which instead tracks the change in the log partition function incurred by successive parameter updates. Our algorithm frames this estimation problem as one of filtering performed over a 2D lattice, with one dimension representing time and the other temperature.
On the topic of optimization, our thesis presents a novel algorithm for applying the natural gradient to large scale Boltzmann Machines. Up until now, its application had been constrained by the computational and memory requirements of computing the Fisher Information Matrix (FIM), which is square in the number of parameters. The Metric-Free Natural Gradient algorithm (MFNG) avoids computing the FIM altogether by combining a linear solver with an efficient matrix-vector operation. The method shows promise in that the resulting updates yield faster per-epoch convergence, despite being slower in terms of wall clock time.
Finally, we explore how invariant features can be learnt through modifications to the BM energy function. We study the problem in the context of the spike & slab Restricted Boltzmann Machine (ssRBM), which we extend to handle both binary and sparse input distributions. By associating each spike with several slab variables, latent variables can be made invariant to a rich, high dimensional subspace resulting in increased invariance in the learnt representation. When using
the expected model posterior as input to a classifier, increased invariance translates to improved classification accuracy in the low-label data regime. We conclude by showing a connection between invariance and the more powerful concept of disentangling factors of variation. While invariance can be achieved by pooling over subspaces, disentangling can be achieved by learning multiple complementary views of the same subspace. In particular, we show how this can be achieved using third-order BMs featuring multiplicative interactions between pairs of random variables.
|
239 |
Analyse syntaxique robuste du français : concilier méthodes statistiques et connaissances linguistiques dans l'outil TalismaneUrieli, Assaf 17 December 2013 (has links) (PDF)
Dans cette thèse, nous explorons l'analyse syntaxique robuste statistique du français. Notre principal souci est de trouver des méthodes qui permettent au linguiste d'injecter des connaissances et/ou des ressources linguistiques dans un moteur statistique afin d'améliorer les résultats pour certains phénomènes spécifiques. D'abord, nous décrivons la schéma d'annotation en dépendances du français, et les algorithmes capables de produire cette annotation, en particulier le parsing par transitions. Après avoir exploré les algorithmes d'apprentissage automatique supervisé pour les problèmes de classification en TAL, nous présentons l'analyseur syntaxique Talismane, développé dans le cadre de cette thèse, et comprennant quatre modules statistiques - le découpage en phrases, la ségmentation en mots, l'étiquettage morpho-syntaxique et le parsing - ainsi que le diverses ressources linguistiques utilisées par le modèle de base. Nos premières expériences tentent d'identifier la meilleure configuration de base parmi des nombreux configurations possibles. Ensuite, nous explorons les améliorations apportées par la recherche par faisceau et la propagation du faisceau. Finalement, nous présentons une série d'expériences dont le but est de corriger des erreurs linguistiques spécifiques au moyen des traits ciblés. Une de nos innovations est l'introduction des règles qui imposent ou interdisent certaines décisions locale, permettant ainsi de contourner le modèle statistique. Nous explorons l'utilisation de règles pour les erreurs que les traits n'ont pu corriger. Finalement, nous présentons une expérience semi-supervisée avec une ressource de sémantique distributionnelle.
|
240 |
Representation Learning for Visual DataDumoulin, Vincent 09 1900 (has links)
No description available.
|
Page generated in 0.0511 seconds