• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 867
  • 125
  • 116
  • 106
  • 63
  • 24
  • 24
  • 20
  • 12
  • 9
  • 8
  • 6
  • 5
  • 5
  • 5
  • Tagged with
  • 1759
  • 421
  • 359
  • 295
  • 270
  • 260
  • 254
  • 223
  • 211
  • 192
  • 179
  • 171
  • 128
  • 123
  • 121
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

The effect of data error in inducing confirmatory inference strategies in scientific hypothesis testing /

Kern, Leslie Helen January 1982 (has links)
No description available.
192

A Roadmap to Pervasive Systems Verification

Konur, Savas, Fisher, M. 01 May 2015 (has links)
yes / The complexity of pervasive systems arises from the many different aspects that such systems possess. A typical pervasive system may be autonomous, distributed, concurrent and context-based, and may involve humans and robotic devices working together. If we wish to formally verify the behaviour of such systems, the formal methods for pervasive systems will surely also be complex. In this paper, we move towards being able to formally verify pervasive systems and outline our approach wherein we distinguish four distinct dimensions within pervasive system behaviour and utilise different, but appropriate, formal techniques for verifying each one. / EPSRC
193

Framework for Digitally Managing Academic Records Using Blockchain Technology

Dharmalingam, R., Ugail, Hassan, Shivasankarappa, A.N., Dharmalingam, V. 25 March 2022 (has links)
No / Research studies report that there are a growing number of falsified educational certificates being produced by dishonest job seekers and higher education applicants across the world. Technological development in the image-processing domain makes editing the document so simple that any individual can perform this kind of forgery without having high-level skills in image editing. Most national governments have put in place stringent policies and procedures to verify and authenticate academic documents. However, due to the amount of human intervention in the process, the efficiency of such measures is debatable. Such systems leave open the possibility that unethical insiders may engage in forgery. In addition, the process of document verification and authentication consumes substantial amounts of time and money. Existing systems of document attestation do not provide a simple and instant way of verifying the authenticity of certificates from transcript level onward. In response to the above issues, this project proposes a prototype model for digitally managing and attesting the academic records using permissioned blockchain technology. By this method, the block-chaining of a student record begins from the time of admission to the Higher Education Institute (HEI) and continues to record the academic progress until graduation, having the graduation details stored as the last block in the chain. The whole blockchain of the student record will remain in the system with the participants enabling any indirect stakeholder to verify the details instantly based on the hash code or QR code. Additional privileges will be provided for direct stakeholders such as (here in Oman) the Ministry of Manpower and the Ministry of Higher Education to access further details of the certificate-holder. The system includes the student as a stakeholder and also as a participant to ensure transparency for her/his academic records.
194

A Framework for Deriving Verification and Validation Strategies to Assess Software Security

Bazaz, Anil 26 April 2006 (has links)
In recent years, the number of exploits targeting software applications has increased dramatically. These exploits have caused substantial economic damages. Ensuring that software applications are not vulnerable to the exploits has, therefore, become a critical requirement. The last line of defense is to test before hand if a software application is vulnerable to exploits. One can accomplish this by testing for the presence of vulnerabilities. This dissertation presents a framework for deriving verification and validation (V&V) strategies to assess the security of a software application by testing it for the presence of vulnerabilities. This framework can be used to assess the security of any software application that executes above the level of the operating system. It affords a novel approach, which consists of testing if the software application permits violation of constraints imposed by computer system resources or assumptions made about the usage of these resources. A vulnerability exists if a constraint or an assumption can be violated. Distinctively different from other approaches found in the literature, this approach simplifies the process of assessing the security of a software application. The framework is composed of three components: (1) a taxonomy of vulnerabilities, which is an informative classification of vulnerabilities, where vulnerabilities are expressed in the form of violable constraints and assumptions; (2) an object model, which is a collection of potentially vulnerable process objects that can be present in a software application; and (3) a V&V strategies component, which combines information from the taxonomy and the object model; and provides approaches for testing software applications for the presence of vulnerabilities. This dissertation also presents a step-by-step process for using the framework to assess software security. / Ph. D.
195

Developing Modeling and Simulation Methodology for Virtual Prototype Power Supply System

Li, Qiong 30 April 1999 (has links)
This dissertation develops a modeling and simulation methodology for design, verification, and testing (DVT) power supply system using a virtual prototype. The virtual prototype is implemented before the hardware prototyping to detect most of the design errors and circuit deficiencies that occur in the later stage of a standard hardware design verification and testing procedure. The design iterations and product cost are reduced significantly by using this approach. The proposed modeling and simulation methodology consists of four major parts: system partitioning, multi-level modeling of device/function block, hierarchical test sequence, and multi-level simulation. By applying the proposed methodology, the designer can use the virtual prototype effectively by keeping a short simulation CPU time as well as catching most of the design problems. The proposed virtual prototype DVT procedure is demonstrated by simulating a 5 V power supply system with a main power supply, a bias power supply, and other protection, monitoring circuitry. The total CPU time is about 8 hours for 780 tests that include the basic function test, steady stage analysis, small-signal stability analysis, large-signal transient analysis, subsystem interaction test, and system interaction test. By comparing the simulation results with the measurements, it shows that the virtual prototype can represent the important behavior of the power supply system accurately. Since the proposed virtual prototype DVT procedure verifies the circuit design with different types of the tests over different line and load conditions, many circuit problems that are not obvious in the original circuit design can be detected by the simulation. The developed virtual prototype DVT procedure is not only capable of detecting most of the design errors, but also plays an important role in design modifications. This dissertation also demonstrates how to analyze the anomalies of the forward converter with active-clamp reset circuit extensively and facilitate the design and improve the circuit performances by utilizing the virtual prototype. With the help of the virtual prototype, it is the first time that the designer is able to analyze the dynamic behavior of the active-clamp forward converter during large-signal transient and optimize the design correspondingly. / Ph. D.
196

Framework for Automatic Translation of Hardware Specifications Written in English to a Formal Language

Krishnamurthy, Rahul 01 November 2022 (has links)
The most time-consuming component of designing and launching hardware products to market is the verification of Integrated Circuits (IC). An effective way of verifying a design can be achieved by adding assertions to the design. Automatic translation of hardware specifications from natural language to assertions in a formal representation has the potential to improve the verification productivity of ICs. However, natural language specifications have the characteristics of being imprecise, incomplete, and ambiguous. An automation framework can benefit verification engineers only if it is designed with the right balance between the ease of expression and precision of meaning allowed for in the input natural language specifications. This requirement introduces two major challenges for designing an effective translation framework. The first challenge is to allow the processing of expressive specifications with flexible word order variations and sentence structures. The second challenge is to assist users in writing unambiguous and complete specifications in the English language that can be accurately translated. In this dissertation, we address the first challenge by modeling semantic parsing of the input sentence as a game of BINGO that can capture the combinatorial nature of natural language semantics. BINGO parsing considers the context of each word in the input sentence to ensure high precision in the creation of semantic frames. We address the second challenge by designing a suggestion and feedback framework to assist users in writing clear and coherent specifications. Our feedback generates different ways of writing acceptable sentences when the input sentence is not understood. We evaluated our BINGO model on 316 hardware design specifications taken from the documents of AMBA, memory controller, and UART architectures. The results showed that highly expressive specifications could be handled in our BINGO model. It also demonstrated the ease of creating rules to generate the same semantic frame for specifications with the same meaning but different word order. We evaluated the suggestion and rewriting framework on 132 erroneous specifications taken from AMBA and memory controller architectures documents. Our system generated suggestions for all the specs. On manual inspection, we found that 87% of these suggestions were semantically closer to the intent of the input specification. Moreover, automatic contextual analysis of the rewritten form of the input specification allowed the translation of the input specification with different words and different order of words that were not defined in our grammar. / Doctor of Philosophy / The most time-consuming component of designing and launching hardware products to market is the verification of hardware circuits. An effective way of verifying a design is to add programming codes called assertions in the design. The creation of assertions can be time-consuming and error-prone due to the technical details needed to write assertions. Automatically translating assertion specifications written in English to program code can reduce design time and errors since the English language hides away the technical details required for writing assertions. However, sentences written in English language can have multiple and incomplete interpretations. It becomes difficult for machines to understand assertions written in the English language. In this work, we automatically generate assertions from assertion descriptions written in English. We propose techniques to write rules that can accurately translate English specifications to assertions. Our rules allow a user to write specifications with flexible use of word order and word interpretations. We have tested the understanding framework on English specifications taken from four different types of hardware design architectures. Since we cannot create rules to understand all possible ways of writing a specification, we have proposed a suggestion framework that can inform the user about the words and word structures acceptable to our translation framework. The suggestion framework was tested on specifications of AMBA and memory controller architectures.
197

Static Analysis to improve RTL Verification

Agrawal, Akash 06 March 2017 (has links)
Integrated circuits have traveled a long way from being a general purpose microprocessor to an application specific circuit. It has become an integral part of the modern era of technology that we live in. As the applications and their complexities are increasing rapidly every day, so are the sizes of these circuits. With the increase in the design size, the associated testing effort to verify these designs is also increased. The goal of this thesis is to leverage some of the static analysis techniques to reduce the effort of testing and verification at the register transfer level. Studying a design at register transfer level gives exposure to the relational information for the design which is inaccessible at the structural level. In this thesis, we present a way to generate a Data Dependency Graph and a Control Flow Graph out of a register transfer level description of a circuit description. Next, the generated graphs are used to perform relation mining to improve the test generation process in terms of speed, branch coverage and number of test vectors generated. The generated control flow graph gives valuable information about the flow of information through the circuit design. We are using this information to create a framework to improve the branch reachability analysis mainly in terms of the speed. We show the efficiency of our methods by running them through a suite of ITC'99 benchmark circuits. / Master of Science
198

Program verificatio in functional programming systems

Silver, James L. January 1983 (has links)
Functional programming systems provide a number of features which facilitate program verification. Such verification may be observed to rest directly upon the theoretical foundations of computing and simultaneously to exhibit a close relation to the programs being verified. In order to demonstrate these aspects of functional systems, two functions, MIN and SORT, are defined on a parameterized type consisting of sequences to elements from some ordered type. Theorems showing that MIN and SORT terminate and return the correct values are stated and proved. Similar results are derived for a function to perform a binary search on an ordered sequence. Finally, conditions similar to Dijkstra’s weakest preconditions are given which allow the simultaneous synthesis and verification of certain programs from program specifications. A function to find the greatest common division of two integers is derived and verified. / M.S.
199

An Automatic Solution to Checking Compatibility between Routing Metrics and Protocols

Liu, Chang 19 January 2016 (has links)
Routing metrics are important mechanisms to adjust routing protocols' path selection according to the needs of a network system. However, if a routing metric design does not correctly match a particular routing protocol, the protocol may not be able to find an optimal path; routing loops can be produced as well. Thus, the compatibility between routing metrics and routing protocols is increasingly significant with the widespread deployment of wired and wireless networks. However, it is usually difficult to tell whether a routing metric can be perfectly applied to a particular routing protocol. Manually enumerating all possible test cases is very challenging and often infeasible. Therefore, it is highly desirable to have an automatic solution so that one can avoid putting an incompatible combination of routing metric and protocol into use. In this thesis, the above issue has been addressed by developing two automated checking systems for examining the compatibility between real world routing metric and protocol implementations. The automatic routing protocol checking system assumes that some properties of routing metrics are given and the system's job is to check if a new routing protocol is able to achieve optimal, consistent and loop- free routing when it is combined with metrics that hold the given metric properties. In contrast to the protocol checking system, the automatic routing metric checking system assumes that a routing protocol is given and the checking system needs to verify if a new metric implementation will be able to work with this protocol. Experiments have been conducted to verify the correctness of both protocol and metric checking systems. / Master of Science
200

Constraint-Based Thread-Modular Abstract Interpretation

Kusano, Markus Jan Urban 25 July 2018 (has links)
In this dissertation, I present a set of novel constraint-based thread-modular abstract-interpretation techniques for static analysis of concurrent programs. Specifically, I integrate a lightweight constraint solver into a thread-modular abstract interpreter to reason about inter-thread interference more accurately. Then, I show how to extend the new analyzer from programs running on sequentially consistent memory to programs running on weak memory. Finally, I show how to perform incremental abstract interpretation, with and without the previously mentioned constraint solver, by analyzing only regions of the program impacted by a program modification. I also demonstrate, through experiments, that these new constraint-based static analyzers are significantly more accurate than prior abstract interpretation-based static analyzers, with lower runtime overhead, and that the incremental technique can drastically reduce runtime overhead in the presence of small program modifications. / Ph. D.

Page generated in 0.0798 seconds